A Lie algebraic approach to the Kondo problem

被引:1
|
作者
Rajeev, S. G. [1 ]
机构
[1] Univ Rochester, Dept Math, Dept Phys & Astron, Rochester, NY 14627 USA
关键词
Renormalization; Kondo problem; Large N; Lie algebra;
D O I
10.1016/j.aop.2010.01.004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Kondo problem is approached using the unitary Lie algebra of spin-singlet fermion bilinears. In the limit when the number of values of the spin N goes to infinity the theory approaches a classical limit, which still requires a renormalization. We determine the ground state of this renormalized theory. Then we construct a quantum theory around this classical limit, which amounts to recovering the case of finite N. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:899 / 908
页数:10
相关论文
共 50 条
  • [1] Unified derivation of exact solutions to the relativistic Coulomb problem: Lie algebraic approach
    Panahi, H.
    Baradaran, M.
    Savadi, A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (10):
  • [2] Unified derivation of exact solutions to the relativistic Coulomb problem: Lie algebraic approach
    H. Panahi
    M. Baradaran
    A. Savadi
    The European Physical Journal Plus, 130
  • [3] ON SUHLS APPROACH TO KONDO PROBLEM
    BRENIG, W
    GOTZE, W
    PHYSICS LETTERS A, 1968, A 27 (05) : 276 - &
  • [4] ON SUHLS APPROACH TO KONDO PROBLEM
    BRENIG, W
    GOTZE, W
    ZEITSCHRIFT FUR PHYSIK, 1968, 217 (02): : 188 - &
  • [5] Lie algebraic approach to special functions
    Pathan, MA
    GEOMETRY ANALYSIS AND APPLICATIONS, 2001, : 359 - 366
  • [6] Lie algebraic approach to GRIN optimization
    Barion, A.
    Anthonissen, M. J. H.
    Boonkkamp, J. H. M. Ten Thije
    Ijzerman, W. L.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2024, 41 (10) : 1863 - 1872
  • [7] A Lie algebraic approach to Novikov algebras
    Bai, CM
    Meng, DJ
    JOURNAL OF GEOMETRY AND PHYSICS, 2003, 45 (1-2) : 218 - 230
  • [8] Quantum kicked top: Lie algebraic approach
    Phys D Nonlinear Phenom, 1-3 (201-209):
  • [9] GROUP THEORETIC, LIE ALGEBRAIC AND JORDAN ALGEBRAIC FORMULATIONS OF THE SIC EXISTENCE PROBLEM
    Appleby, D. M.
    Fuchs, Christopher A.
    Zhu, Huangjun
    QUANTUM INFORMATION & COMPUTATION, 2015, 15 (1-2) : 61 - 94
  • [10] Lie algebraic approach to quantum driven optomechanics
    Paredes-Juarez, A.
    Ramos-Prieto, I
    Berrondo, M.
    Recamier, J.
    PHYSICA SCRIPTA, 2020, 95 (03)