Boundedness and compactness of an integral operator in a mixed norm space on the polydisk

被引:75
|
作者
Stevic, S. [1 ]
机构
[1] Serbian Acad Sci, Inst Math, Belgrade, Serbia
关键词
analytic function; mixed norm space; integral operator; polydisk; boundedness; compactness;
D O I
10.1007/s11202-007-0058-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the following integral type operator [GRAPHICS] in the space of analytic functions on the unit polydisk U(m) complex vector space C(n). We show that the operator is bounded in the mixed norm space [GRAPHICS] with p,q is an element of [1,alpha) and alpha = (alpha(1)..., alpha(n)), such that alpha(j) > -1 for every j = 1...., n, if and only if sup(z is an element of Un) Pi(n)(j=1)(1-vertical bar z(j)vertical bar)vertical bar g(z)vertical bar < alpha. Also, we prove that the operator is compact if and only if limz ->partial derivative Un Pi(n)(j=1)(1-vertical bar z(j)vertical bar)vertical bar g(z)vertical bar = 0.
引用
收藏
页码:559 / 569
页数:11
相关论文
共 50 条