The Bailey lemma and Kostka polynomials

被引:9
|
作者
Warnaar, SO [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
关键词
Kostka polynomials; Bailey's lemma; branching functions; q-series;
D O I
10.1023/B:JACO.0000047280.16877.1f
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the theory of Kostka polynomials, we prove an A(n-1) version of Bailey's lemma at integral level. Exploiting a new, conjectural expansion for Kostka numbers, this is then generalized to fractional levels, leading to a new expression for admissible characters of A(n-1)((1)) and to identities for A-type branching functions.
引用
收藏
页码:131 / 171
页数:41
相关论文
共 50 条
  • [1] The Bailey Lemma and Kostka Polynomials
    S. Ole Warnaar
    Journal of Algebraic Combinatorics, 2004, 20 : 131 - 171
  • [2] Spin Kostka polynomials
    Wan, Jinkui
    Wang, Weiqiang
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 37 (01) : 117 - 138
  • [3] Spin Kostka polynomials
    Jinkui Wan
    Weiqiang Wang
    Journal of Algebraic Combinatorics, 2013, 37 : 117 - 138
  • [4] GROWTH OF THE KOSTKA POLYNOMIALS
    HAN, GN
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 311 (06): : 269 - 272
  • [5] Ubiquity of Kostka polynomials
    Kirillov, AN
    PHYSICS AND COMBINATORICS 1999, 2001, : 85 - 200
  • [6] A NOTE ON BAILEY LEMMA
    PAULE, P
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 44 (01) : 164 - 167
  • [7] Hall polynomials, inverse Kostka polynomials and puzzles
    Wheeler, M.
    Zinn-Justin, P.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 159 : 107 - 163
  • [8] A monoid of Kostka–Foulkes polynomials
    Pasquale Petrullo
    Domenico Senato
    Journal of Algebraic Combinatorics, 2020, 51 : 353 - 368
  • [9] A Generalization of the Kostka–Foulkes Polynomials
    Anatol N. Kirillov
    Mark Shimozono
    Journal of Algebraic Combinatorics, 2002, 15 : 27 - 69
  • [10] THE C(L) BAILEY TRANSFORM AND BAILEY LEMMA
    LILLY, GM
    MILNE, SC
    CONSTRUCTIVE APPROXIMATION, 1993, 9 (04) : 473 - 500