Weighted multi-deep ranking supervised hashing for efficient image retrieval

被引:13
|
作者
Li, Jiayong [1 ]
Ng, Wing W. Y. [1 ]
Tian, Xing [1 ]
Kwong, Sam [2 ]
Wang, Hui [3 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangdong Prov Key Lab Computat Intelligence & Cy, Guangzhou, Guangdong, Peoples R China
[2] Hong Kong City Univ, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China
[3] Ulster Univ, Sch Comp, Jordanstown, North Ireland
基金
中国国家自然科学基金;
关键词
Deep hashing; Image retrieval; Multi-table; Weighting; Ranking loss;
D O I
10.1007/s13042-019-01026-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep hashing has proven to be efficient and effective for large-scale image retrieval due to the strong representation capability of deep networks. Existing deep hashing methods only utilize a single deep hash table. In order to achieve both higher retrieval recall and precision, longer hash codes can be used but at the expense of higher space usage. To address this issue, a novel deep hashing method is proposed in this paper, weighted multi-deep ranking supervised hashing (WMDRH), which employs multiple weighted deep hash tables to improve precision/recall without increasing space usage. The hash table is constructed as an additional layer in a deep network. Hash codes are generated by minimizing the loss function that contains two terms: (1) the ranking pairwise loss and (2) the classification loss. The ranking pairwise loss ensures to generate discriminative hash codes by penalizing more for the (dis)similar image pairs with (small)large Hamming distances. The classification loss guarantees the hash codes to be effective for category prediction. Different hash bits in each individual hash table are treated differently by assigning corresponding weights based on information preservation and bit diversity. Moreover, multiple hash tables are integrated by assigning the appropriate weight to each table according to its mean average precision (MAP) score for image retrieval. Experiments on three widely-used image databases show the proposed method outperforms state-of-the-art hashing methods.
引用
收藏
页码:883 / 897
页数:15
相关论文
共 50 条
  • [1] Weighted multi-deep ranking supervised hashing for efficient image retrieval
    Jiayong Li
    Wing W. Y. Ng
    Xing Tian
    Sam Kwong
    Hui Wang
    International Journal of Machine Learning and Cybernetics, 2020, 11 : 883 - 897
  • [2] An Efficient Supervised Deep Hashing Method for Image Retrieval
    Hussain, Abid
    Li, Heng-Chao
    Ali, Muqadar
    Wali, Samad
    Hussain, Mehboob
    Rehman, Amir
    ENTROPY, 2022, 24 (10)
  • [3] Multi-level supervised hashing with deep features for efficient image retrieval
    Ng, Wing W. Y.
    Li, Jiayong
    Tian, Xing
    Wang, Hui
    Kwong, Sam
    Wallace, Jonathan
    NEUROCOMPUTING, 2020, 399 : 171 - 182
  • [4] DEEP LEARNING BASED SUPERVISED HASHING FOR EFFICIENT IMAGE RETRIEVAL
    Viet-Anh Nguyen
    Do, Minh N.
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [5] Piecewise supervised deep hashing for image retrieval
    Yannuan Li
    Lin Wan
    Ting Fu
    Weijun Hu
    Multimedia Tools and Applications, 2019, 78 : 24431 - 24451
  • [6] Deep Supervised Hashing for Fast Image Retrieval
    Liu, Haomiao
    Wang, Ruiping
    Shan, Shiguang
    Chen, Xilin
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2064 - 2072
  • [7] Piecewise supervised deep hashing for image retrieval
    Li, Yannuan
    Wan, Lin
    Fu, Ting
    Hu, Weijun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (17) : 24431 - 24451
  • [8] Deep Supervised Hashing for Fast Image Retrieval
    Haomiao Liu
    Ruiping Wang
    Shiguang Shan
    Xilin Chen
    International Journal of Computer Vision, 2019, 127 : 1217 - 1234
  • [9] Robust Deep Supervised Hashing for Image Retrieval
    Mo, Zhaoguo
    Zhu, Yuesheng
    Zhan, Jiawei
    TWELFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2020), 2020, 11519
  • [10] Deep Supervised Hashing for Fast Image Retrieval
    Liu, Haomiao
    Wang, Ruiping
    Shan, Shiguang
    Chen, Xilin
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2019, 127 (09) : 1217 - 1234