A multi-body dynamical evolution model for generating the point set with best uniformity

被引:9
|
作者
Wu, Feng [1 ,2 ]
Zhao, Yuelin [1 ]
Zhao, Ke [1 ]
Zhong, Wanxie [1 ]
机构
[1] Fac Univ Technol, Dept Engn Mech, Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China
[2] Dalian Univ Technol, Dalian, Peoples R China
关键词
Key Dynamical evolutionary model; Multi-body problem; Low-discrepancy sequences;   Heterogeneous comprehensive learning; particle swarm optimization; Quasi-Monte Carlo; Potential energy; N-BODY SIMULATION; CODE; DISCREPANCY; SEQUENCES; NETWORKS; PARALLEL; SYSTEM;
D O I
10.1016/j.swevo.2022.101121
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generating the low-discrepancy point sets in high-dimensional space is an optimization problem which involves two issues: how to define the objective function of optimization, and how to optimize this optimization problem with tens of thousands of variables. Inspired by natural phenomena, we make two assumptions: the first is that the static solution to the multi-body problem is a low-discrepancy point set, and the second is that the discrepancy of bodies is the lowest when the potential energy is the smallest. Under these assumptions, the objective function is defined as the potential energy of the point set. A dynamical evolutionary model (DEM) based on the minimum potential energy principle is established to construct low-discrepancy point sets. The central difference algorithm is adopted to solve the DEM and the selection of coefficients to ensure the convergence is discussed in detail. Numerical examples confirm the assumption that there is a significant positive correlation between the potential energy and the discrepancy. We also combine the DEM with the restarting technique to generate a series of low -discrepancy point sets. These point sets are unbiased and perform better than other low-discrepancy point sets in terms of the discrepancy, the potential energy, integrating eight test functions and computing the statistical moments for two practical stochastic problems. Numerical examples also show that the DEM can generate uni-formly distributed point sets in non-cubes. More interestingly, it is observed that the DEM point sets can greatly improve the convergence speed of the heterogeneous comprehensive learning particle swarm optimization.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Dynamical evolution of natural formations in libration point orbits in a multi-body regime
    Heritier, Aurelie
    Howell, Kathleen C.
    ACTA ASTRONAUTICA, 2014, 102 : 332 - 340
  • [2] GENERATING PARAMETERS OF A MULTI-BODY MENISCUS MODEL FROM EXPERIMENTAL DATA
    Paiva, Gavin
    Guess, Trent
    Kia, Mohammad
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE, 2010, 2010, : 741 - 742
  • [3] Research on the Earth system multi-body force system dynamical model
    Chen Xiaofei
    Bi Siwen
    Fei, Wu
    Dong Qianlin
    SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2006, : 11 - 22
  • [4] Research on the Earth system multi-body force system dynamical model
    CHEN Xiaofei
    Laboratory of 3D Information Access and Application of Capital Normal University
    Science China Technological Sciences, 2006, (S2) : 11 - 22
  • [5] Bifurcation and Chaos of Multi-body Dynamical Systems
    Awrejcewicz, Jan
    Kudra, G.
    VIBRATION PROBLEMS ICOVP 2011, 2011, 139 : 3 - 12
  • [6] Diagnostics of Bolted Joints in Vibrating Screens Based on a Multi-Body Dynamical Model
    Krot, Pavlo
    Shiri, Hamid
    Dabek, Przemyslaw
    Zimroz, Radoslaw
    MATERIALS, 2023, 16 (17)
  • [7] Dynamical structures in a low-thrust, multi-body model with applications to trajectory design
    Andrew D. Cox
    Kathleen C. Howell
    David C. Folta
    Celestial Mechanics and Dynamical Astronomy, 2019, 131
  • [8] Multi-body simulation of a flapping-wing robot using an efficient dynamical model
    Zahra Jahanbin
    Ali Selk Ghafari
    Abbas Ebrahimi
    Ali Meghdari
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38 : 133 - 149
  • [9] Multi-body simulation of a flapping-wing robot using an efficient dynamical model
    Jahanbin, Zahra
    Ghafari, Ali Selk
    Ebrahimi, Abbas
    Meghdari, Ali
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2016, 38 (01) : 133 - 149
  • [10] Multi-body dynamics: historical evolution and application
    Rahnejat, H
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2000, 214 (01) : 149 - 173