Dynamics of ICA for high-dimensional data

被引:0
|
作者
Basalyga, G [1 ]
Rattray, M [1 ]
机构
[1] Univ Manchester, Dept Comp Sci, Manchester M13 9PL, Lancs, England
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The learning dynamics close to the initial conditions of an on-line Hebbian ICA algorithm has been studied. For large input dimension the dynamics can be described by a diffusion equation. A surprisingly large number of examples and unusually low initial learning rate are required to avoid a stochastic trapping state near the initial conditions. Escape from this state results in symmetry breaking and the algorithm therefore avoids trapping in plateau-like fixed points which have been observed in other learning algorithms.
引用
收藏
页码:1112 / 1118
页数:7
相关论文
共 50 条
  • [1] High-dimensional data
    Amaratunga, Dhammika
    Cabrera, Javier
    [J]. JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2016, 44 (01): : 3 - 9
  • [2] High-dimensional data
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Valkenborg, Dirk
    Burzykowski, Tomasz
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2023, 164 (03) : 453 - 456
  • [3] EXTRACTING SPARSE HIGH-DIMENSIONAL DYNAMICS FROM LIMITED DATA
    Schaeffer, Hayden
    Tran, Giang
    Ward, Rachel
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (06) : 3279 - 3295
  • [4] On Criticality in High-Dimensional Data
    Saremi, Saeed
    Sejnowski, Terrence J.
    [J]. NEURAL COMPUTATION, 2014, 26 (07) : 1329 - 1339
  • [5] High-dimensional data clustering
    Bouveyron, C.
    Girard, S.
    Schmid, C.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) : 502 - 519
  • [7] High-Dimensional Data Bootstrap
    Chernozhukov, Victor
    Chetverikov, Denis
    Kato, Kengo
    Koike, Yuta
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2023, 10 : 427 - 449
  • [8] High-dimensional data visualization
    Tang, Lin
    [J]. NATURE METHODS, 2020, 17 (02) : 129 - 129
  • [9] High-dimensional data visualization
    Lin Tang
    [J]. Nature Methods, 2020, 17 : 129 - 129
  • [10] Modeling High-Dimensional Data
    Vempala, Santosh S.
    [J]. COMMUNICATIONS OF THE ACM, 2012, 55 (02) : 112 - 112