Superhydrophilic and underwater superoleophobic nano zeolite membranes for efficient oil-in-water nanoemulsion separation

被引:24
|
作者
Anis, Shaheen F. [1 ]
Lalia, Boor S. [1 ]
Lesimple, Alain [1 ]
Hashaikeh, Raed [1 ]
Hilal, Nidal [1 ]
机构
[1] New York Univ Abu Dhabi, NYUAD Water Res Ctr, POB 129188, Abu Dhabi, U Arab Emirates
关键词
Ceramic membrane; Nano-zeolite; oil/water separation; Nanoemulsion;
D O I
10.1016/j.jwpe.2020.101802
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nano zeolite-Y ultrafiltration (UF) membrane, with mean pore diameter of 28 nm was fabricated using a simple isostatic pressing technique. Zeolite-Y has preferential water pathways and a unique 3-D microporous structure. The zeolite-Y used in this study has an Al to Si (Al/Si) ratio of 0.07 which renders the membrane superhydrophilic with complete wetting of water in air. Whereas, when it is underwater, the membrane is superoleophobic with a contact angle of 156 degrees. This study compared membranes with two different zeolite particle sizes, above and below 100 nm for their membrane morphology, and wetting properties, directly affecting the separation of oil-in-water separation. The membrane separation capabilities were tested for 600 mg/L of xylene, motor oil and crude oil mixture in water. There are limited studies on treating oil/water mixtures having nanoemulsions with stand-alone zeolite membranes, and thus this study provides a deeper insight on utilizing such a ceramic material for improved separation processes. A flux of 45-70 L/m(2).h was obtained for the nano-zeolite membrane, depending upon the type of oil, with the motor oil giving the lowest flux due to its heavy components. The nano-zeolite membranes produced similar to 20 % higher flux than the micro-zeolite membrane at a membrane pressure of 70 kPa. A higher flux was attributed to the higher membrane porosity and favored nano-channel pathways along the zeolite pores for the water molecules. In addition, oil rejections as high as 99.8 % with oil content as low as 1.57 +/- 0.2 mg/L were obtained. Thus, the membrane was found to be very effective in nanoemulsion oil-water separation owing to its exceptional structural properties and superoleophobicity of oil under water.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [1] Facile fabrication of superhydrophilic and underwater superoleophobic nanofiber membranes for highly efficient separation of oil-in-water emulsion
    Obaid, M.
    Mohamed, Hend Omar
    Alayande, Abayomi Babatunde
    Kang, Yesol
    Ghaffour, Noreddine
    Kim, In S.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 272
  • [2] Superhydrophilic and underwater superoleophobic Graphene oxide-Phytic acid membranes for efficient separation of oil-in-water emulsions
    Tan, Sue Lyn
    El Meragawi, Sally
    Majumder, Mainak
    Von Lau, Ee
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 314
  • [3] Efficient separation of oil-in-water emulsion based on a superhydrophilic and underwater superoleophobic polyvinylidene fluoride membrane
    Qu, Mengnan
    Pang, Yajie
    Li, Jiehui
    Wang, Rong
    Luo, Zhanxia
    He, Dan
    Sun, Wenchao
    Peng, Lei
    He, Jinmei
    SURFACE AND INTERFACE ANALYSIS, 2021, 53 (11) : 910 - 918
  • [4] Sugarcane-based superhydrophilic and underwater superoleophobic membrane for efficient oil-in-water emulsions separation
    Liu, Yanhua
    Bai, Tianbin
    Zhao, Shixing
    Zhang, Zhuanli
    Feng, Meijun
    Zhang, Jianbin
    Li, Dianming
    Feng, Libang
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 461
  • [5] Superhydrophilic and underwater superoleophobic polylactide/cellulose diacetate composite nanofibrous membranes for effective oil-in-water emulsions separation
    Jiang, Changmei
    Hua, Ming
    Mu, Guixian
    Zhao, Shiyou
    Chen, Hong
    Yao, Lirong
    Ge, Jianlong
    Zhang, Li
    Pan, Gangwei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 348
  • [6] Superhydrophilic and underwater superoleophobic MFI zeolite-coated film for oil/water separation
    Zeng, Jiawen
    Guo, Zhiguang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2014, 444 : 283 - 288
  • [7] Superhydrophilic and underwater superoleophobic PVDF-PES nanofibrous membranes for highly efficient surfactant-stabilized oil-in-water emulsions separation
    Yang, Yujie
    Huang, Enming
    Dansawad, Panchan
    Li, Yize
    Qing, Yashi
    Lv, Changzheng
    Cao, Lixia
    You, Siming
    Li, Yanxiang
    Li, Wangliang
    JOURNAL OF MEMBRANE SCIENCE, 2023, 687
  • [8] Superhydrophilic and underwater superoleophobic ceramic membranes grafted by layered polydopamine and polydopamine encapsulated silica particles for efficient separation of oil-in-water emulsions
    Usman, Jamilu
    Baig, Nadeem
    Aljundi, Isam H.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (03):
  • [9] Superhydrophilic and underwater superoleophobic mesh coating for efficient oil-water separation
    Li, Jianhua
    Cheng, Hei Man
    Chan, Ching Ying
    Ng, Pui Fai
    Chen, Lei
    Fei, Bin
    Xin, John H.
    RSC ADVANCES, 2015, 5 (64) : 51537 - 51541
  • [10] Preparation of superhydrophilic/underwater superoleophobic membranes for separating oil-in-water emulsion: mechanism, progress, and perspective
    Wang, Xinya
    Huang, Weiqiu
    Fu, Lipei
    Sun, Xianhang
    Zhong, Jing
    Dong, Shaocan
    Zhu, Jiahui
    JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2021, 18 (02) : 285 - 310