Decoherence in the quantum walk on the line

被引:102
|
作者
Romanelli, A
Siri, R
Abal, G
Auyuanet, A
Donangelo, R
机构
[1] Univ Republica, Fac Ingn, Inst Fis, Montevideo 11000, Uruguay
[2] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil
关键词
hadamard walk; quantum information; random walk; Markov process; Brownian motion;
D O I
10.1016/j.physa.2004.08.070
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the quantum walk on the line when decoherences are introduced either through simultaneous measurements of the chirality and particle position, or as a result of broken links. Both mechanisms drive the system to a classical diffusive behavior. In the case of measurements, we show that the diffusion coefficient is proportional to the variance of the initially localized quantum random walker just before the first measurement. When links between neighboring sites are randomly broken with probability p per unit time, the evolution becomes decoherent after a characteristic time that scales as 1/p. The fact that the quadratic increase of the variance is eventually lost even for very small frequencies of disrupting events suggests that the implementation of a quantum walk on a real physical system may be severely limited by thermal noise and lattice imperfections. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:137 / 152
页数:16
相关论文
共 50 条
  • [1] Decoherence in a quantum walk on the line
    Kendon, V
    Tregenna, B
    [J]. QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 463 - 466
  • [2] Decoherence in the three-state quantum walk
    Tude, Luisa Toledo
    Oliveira, Marcos Cesar de
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 605
  • [3] Decoherence in a one-dimensional quantum walk
    Annabestani, Mostafa
    Akhtarshenas, Seyed Javad
    Abolhassani, Mohamad Reza
    [J]. PHYSICAL REVIEW A, 2010, 81 (03):
  • [4] Quantum walk on the line with quantum rings
    Kalman, Orsolya
    Kiss, Tamas
    Foldi, Peter
    [J]. PHYSICAL REVIEW B, 2009, 80 (03)
  • [5] Decoherence in optimized quantum random-walk search algorithm
    Zhang Yu-Chao
    Bao Wan-Su
    Wang Xiang
    Fu Xiang-Qun
    [J]. CHINESE PHYSICS B, 2015, 24 (08)
  • [6] Usefulness of Decoherence in Quantum-Walk-Based Hash Function
    Yu-Guang Yang
    Jing-Ru Dong
    Yong-Li Yang
    Yi-Hua Zhou
    Wei-Min Shi
    [J]. International Journal of Theoretical Physics, 2021, 60 : 1025 - 1037
  • [7] Decoherence in optimized quantum random-walk search algorithm
    张宇超
    鲍皖苏
    汪翔
    付向群
    [J]. Chinese Physics B, 2015, 24 (08) : 197 - 202
  • [8] Usefulness of Decoherence in Quantum-Walk-Based Hash Function
    Yang, Yu-Guang
    Dong, Jing-Ru
    Yang, Yong-Li
    Zhou, Yi-Hua
    Shi, Wei-Min
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (03) : 1025 - 1037
  • [9] Trapping a particle of a quantum walk on the line
    Wojcik, Antoni
    Luczak, Tomasz
    Kurzynski, Pawel
    Grudka, Andrzej
    Gdala, Tomasz
    Bednarska-Bzdega, Malgorzata
    [J]. PHYSICAL REVIEW A, 2012, 85 (01):
  • [10] Quantum Walk on a Line for a Trapped Ion
    Xue, Peng
    Sanders, Barry C.
    Leibfried, Dietrich
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (18)