Pointwise Multiplication on Vector-Valued Function Spaces with Power Weights

被引:24
|
作者
Meyries, Martin [1 ]
Veraar, Mark [2 ]
机构
[1] Univ Halle Wittenberg, Inst Math, D-06099 Halle, Saale, Germany
[2] Delft Univ Technol, Delft Inst Appl Math, NL-2600 GA Delft, Netherlands
关键词
Pointwise multipliers; Characteristic functions; Sobolev spaces; Bessel-potential spaces; Besov spaces; Triebel-Lizorkin spaces; Muckenhoupt weights; Paraproducts; UMD spaces; Type; Cotype; Littlewood-Paley theory; LIZORKIN-TRIEBEL SPACES; MULTIPLIERS; THEOREMS; TRANSFORMATIONS; EMBEDDINGS;
D O I
10.1007/s00041-014-9362-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate pointwise multipliers on vector-valued function spaces over , equipped with Muckenhoupt weights. The main result is that in the natural parameter range, the characteristic function of the half-space is a pointwise multiplier on Bessel-potential spaces with values in a UMD Banach space. This is proved for a class of power weights, including the unweighted case, and extends the classical result of Shamir and Strichartz. The multiplication estimate is based on the paraproduct technique and a randomized Littlewood-Paley decomposition. An analogous result is obtained for Besov and Triebel-Lizorkin spaces.
引用
收藏
页码:95 / 136
页数:42
相关论文
共 50 条