A hybrid memory built by SSD and DRAM to support in-memory Big Data analytics

被引:10
|
作者
Chen, Zhiguang [1 ,2 ]
Lu, Yutong [1 ,2 ]
Xiao, Nong [1 ,2 ]
Liu, Fang [1 ,2 ]
机构
[1] Natl Univ Def Technol, State Key Lab High Performance Comp, Changsha, Hunan, Peoples R China
[2] Natl Univ Def Technol, Coll Comp, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hybrid memory; SSD; Big Data; In-memory computing; Prefetch; Pattern recognition; PERFORMANCE; CACHE;
D O I
10.1007/s10115-013-0727-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Big Data requires a shift in traditional computing architecture. The in-memory computing is a new paradigm for Big Data analytics. However, DRAM-based main memory is neither cost-effective nor energy-effective. This work combines flash-based solid state drive (SSD) and DRAM together to build a hybrid memory, which meets both of the two requirements. As the latency of SSD is much higher than that of DRAM, the hybrid architecture should guarantee that most requests are served by DRAM rather than by SSD. Accordingly, we take two measures to enhance the hit ratio of DRAM. First, the hybrid memory employs an adaptive prefetching mechanism to guarantee that data have already been prepared in DRAM before they are demanded. Second, the DRAM employs a novel replacement policy to give higher priority to replace data that are easy to be prefetched because these data can be served by prefetching once they are demanded once again. On the contrary, the data that are hard to be prefetched are protected by DRAM. The prefetching mechanism and replacement policy employed by the hybrid memory rely on access patterns of files. So, we propose a novel pattern recognition method by improving the LZ data compression algorithm to detect access patterns. We evaluate our proposals via prototype and trace-driven simulations. Experimental results demonstrate that the hybrid memory is able to extend the DRAM by more than twice.
引用
收藏
页码:335 / 354
页数:20
相关论文
共 50 条
  • [1] A hybrid memory built by SSD and DRAM to support in-memory Big Data analytics
    Zhiguang Chen
    Yutong Lu
    Nong Xiao
    Fang Liu
    [J]. Knowledge and Information Systems, 2014, 41 : 335 - 354
  • [2] Distributed In-Memory Analytics for Big Temporal Data
    Yao, Bin
    Zhang, Wei
    Wang, Zhi-Jie
    Chen, Zhongpu
    Shang, Shuo
    Zheng, Kai
    Guo, Minyi
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2018, PT I, 2018, 10827 : 549 - 565
  • [3] Towards Automatic Memory Tuning for In-Memory Big Data Analytics in Clusters
    Koliopoulos, Aris-Kyriakos
    Yiapanis, Paraskevas
    Tekiner, Firat
    Nenadic, Goran
    Keane, John
    [J]. 2016 IEEE INTERNATIONAL CONGRESS ON BIG DATA - BIGDATA CONGRESS 2016, 2016, : 353 - 356
  • [4] Using In-Memory Analytics to Quickly Crunch Big Data
    Garber, Lee
    [J]. COMPUTER, 2012, 45 (10) : 16 - 18
  • [5] Survey of In-memory Big Data Analytics and Latest Research Opportunities
    Gangarde, Rupali
    Pawar, Ambika
    Dani, Ajay
    [J]. 2016 FOURTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (PDGC), 2016, : 197 - 201
  • [6] Eager Memory Management for In-Memory Data Analytics
    Jang, Hakbeom
    Bae, Jonghyun
    Ham, Tae Jun
    Lee, Jae W.
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (03): : 632 - 636
  • [7] Exploration of In-Memory Computing for Big Data Analytics using Queuing Theory
    Srivastava, Riktesh
    [J]. 2018 2ND INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPILATION, COMPUTING AND COMMUNICATIONS (HP3C 2018), 2018, : 11 - 16
  • [8] ClimateSpark: An in-memory distributed computing framework for big climate data analytics
    Hu, Fei
    Yang, Chaowei
    Schnase, John L.
    Duffy, Daniel Q.
    Xu, Mengchao
    Bowen, Michael K.
    Lee, Tsengdar
    Song, Weiwei
    [J]. COMPUTERS & GEOSCIENCES, 2018, 115 : 154 - 166
  • [9] In-Memory Performance for Big Data
    Graefe, Goetz
    Volos, Haris
    Kimura, Hideaki
    Kuno, Harumi
    Tucek, Joseph
    Lillibridge, Mark
    Veitch, Alistair
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2014, 8 (01): : 37 - 48
  • [10] Optimizing Performance and Computing Resource Management of in-memory Big Data Analytics with Disaggregated Persistent Memory
    Chen, Shouwei
    Wang, Wensheng
    Wu, Xueyang
    Fan, Zhen
    Huang, Kunwu
    Zhuang, Peiyu
    Li, Yue
    Rodero, Ivan
    Parashar, Manish
    Weng, Dennis
    [J]. 2019 19TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2019, : 21 - 30