Time-Contrastive Networks: Self-Supervised Learning from Video

被引:0
|
作者
Sermanet, Pierre [1 ]
Lynch, Corey [1 ]
Chebotar, Yevgen [2 ]
Hsu, Jasmine [1 ]
Jang, Eric [1 ]
Schaal, Stefan [2 ]
Levine, Sergey [1 ]
机构
[1] Google Brain, Mountain View, CA 94043 USA
[2] Univ Southern Calif, Los Angeles, CA USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a self-supervised approach for learning representations and robotic behaviors entirely from unlabeled videos recorded from multiple viewpoints, and study how this representation can be used in two robotic imitation settings: imitating object interactions from videos of humans, and imitating human poses. Imitation of human behavior requires a viewpoint-invariant representation that captures the relationships between end-effectors (hands or robot grippers) and the environment, object attributes, and body pose. We train our representations using a triplet loss, where multiple simultaneous viewpoints of the same observation are attracted in the embedding space, while being repelled from temporal neighbors which are often visually similar but functionally different. This signal causes our model to discover attributes that do not change across viewpoint, but do change across time, while ignoring nuisance variables such as occlusions, motion blur, lighting and background. We demonstrate that this representation can be used by a robot to directly mimic human poses without an explicit correspondence, and that it can be used as a reward function within a reinforcement learning algorithm. While representations are learned from an unlabeled collection of task-related videos, robot behaviors such as pouring are learned by watching a single 3rd-person demonstration by a human. Reward functions obtained by following the human demonstrations under the learned representation enable efficient reinforcement learning that is practical for real-world robotic systems. Video results, open-source code and dataset are available at sermanet.github.io/imitate
引用
收藏
页码:1134 / 1141
页数:8
相关论文
共 50 条
  • [1] Time-Contrastive Networks: Self-Supervised Learning from Multi-View Observation
    Sermanet, Pierre
    Lynch, Corey
    Hsu, Jasmine
    Levine, Sergey
    [J]. 2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 486 - 487
  • [2] Slimmable Networks for Contrastive Self-supervised Learning
    Zhao, Shuai
    Zhu, Linchao
    Wang, Xiaohan
    Yang, Yi
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024,
  • [3] Self-Supervised Contrastive Learning In Spiking Neural Networks
    Bahariasl, Yeganeh
    Kheradpisheh, Saeed Reza
    [J]. PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 181 - 185
  • [4] Motion Sensitive Contrastive Learning for Self-supervised Video Representation
    Ni, Jingcheng
    Zhou, Nan
    Qin, Jie
    Wu, Qian
    Liu, Junqi
    Li, Boxun
    Huang, Di
    [J]. COMPUTER VISION - ECCV 2022, PT XXXV, 2022, 13695 : 457 - 474
  • [5] Similarity contrastive estimation for image and video soft contrastive self-supervised learning
    Denize, Julien
    Rabarisoa, Jaonary
    Orcesi, Astrid
    Herault, Romain
    [J]. MACHINE VISION AND APPLICATIONS, 2023, 34 (06)
  • [6] Self-supervised Graph Contrastive Learning for Video Question Answering
    Yao, Xuan
    Gao, Jun-Yu
    Xu, Chang-Sheng
    [J]. Ruan Jian Xue Bao/Journal of Software, 2023, 34 (05): : 2083 - 2100
  • [7] Similarity contrastive estimation for image and video soft contrastive self-supervised learning
    Julien Denize
    Jaonary Rabarisoa
    Astrid Orcesi
    Romain Hérault
    [J]. Machine Vision and Applications, 2023, 34
  • [8] Adversarial Self-Supervised Contrastive Learning
    Kim, Minseon
    Tack, Jihoon
    Hwang, Sung Ju
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [9] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    [J]. TECHNOLOGIES, 2021, 9 (01)
  • [10] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876