Geometry of entanglement witnesses and local detection of entanglement

被引:32
|
作者
Pittenger, AO [1 ]
Rubin, MH
机构
[1] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
[2] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 01期
关键词
D O I
10.1103/PhysRevA.67.012327
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Let H-[N]=H-1([d)]circle times.circle timesH(n)([d)] be a tensor product of Hilbert spaces and let tau(0) be the closest separable state in the Hilbert-Schmidt norm to an entangled state rho(0). Let tau(0) denote the closest separable state to rho(0) along the line segment from I/N to rho(0) where I is the identity matrix. Following A. O. Pittenger and M. H. Rubin [Linear Algebr. Appl. 346, 75 (2002)] a witness W-0 detecting the entanglement of rho(0) can be constructed in terms of I, tau(0), and tau(0). If representations of tau(0) and tau(0) as convex combinations of separable projections are known, then the entanglement of rho(0) can be detected by local measurements. Guhne [Phys. Rev. A 66, 062305 (2002)] obtain the minimum number of measurement settings required for a class of two-qubit states. We use our geometric approach to generalize their result to the corresponding two-qudit case when d is prime and obtain the minimum number of measurement settings. In those particular bipartite cases, tau(0)=tau(0). We illustrate our general approach with a two-parameter family of three-qubit bound entangled states for which tau(0)not equaltau(0) and we show that our approach works for n qubits. We elaborated earlier [A. O. Pittenger, Linear Algebr. App. 359, 235 (2003)] on the role of a "far face" of the separable states relative to a bound entangled state rho(0) constructed from an orthogonal unextendible product base. In this paper the geometric approach leads to an entanglement witness expressible in terms of a constant times I and a separable density mu(0) on the far face from rho(0). Up to a normalization this coincides with the witness obtained by Guhne for the particular example analyzed there.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Geometry of entanglement witnesses and local detection of entanglement
    Pittenger, Arthur O.
    Rubin, Morton H.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 67 (01): : 1 - 012327
  • [2] Entanglement witnesses and geometry of entanglement of two-qutrit states
    Bertlmann, Reinhold A.
    Krammer, Philipp
    ANNALS OF PHYSICS, 2009, 324 (07) : 1388 - 1407
  • [3] Geometry of Entanglement Witnesses for Two Qutrits
    Chruscinski, Dariusz
    Wudarski, Filip A.
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2011, 18 (04): : 375 - 387
  • [4] Improved entanglement detection with subspace witnesses
    Sun, Won Kyu Calvin
    Cooper, Alexandre
    Cappellaro, Paola
    PHYSICAL REVIEW A, 2020, 101 (01)
  • [5] Geometric entanglement witnesses and bound entanglement
    Bertlmann, Reinhold A.
    Krammer, Philipp
    PHYSICAL REVIEW A, 2008, 77 (02):
  • [6] Characterizing entanglement with geometric entanglement witnesses
    Krammer, Philipp
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (06)
  • [7] Entanglement witnesses with variable number of local measurements
    Laskowski, Wieslaw
    Markiewicz, Marcin
    Paterek, Tomasz
    Weinar, Ryszard
    PHYSICAL REVIEW A, 2013, 88 (02):
  • [8] Geometry of Entanglement Witnesses Parametrized by SO(3) Group
    Chruscinski, Dariusz
    Wudarski, Filip A.
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2012, 19 (03):
  • [9] Local detection of entanglement
    Rigolin, G
    Escobar, CO
    EUROPEAN PHYSICAL JOURNAL D, 2006, 37 (02): : 291 - 296
  • [10] Local detection of entanglement
    G. Rigolin
    C. O. Escobar
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2006, 37 : 291 - 296