Tight Kernels for Covering and Hitting: POINT HYPERPLANE COVER and POLYNOMIAL POINT HITTING SET

被引:1
|
作者
Boissonnat, Jean-Daniel [1 ]
Dutta, Kunal [1 ]
Ghosh, Arijit [2 ]
Kolay, Sudeshna [3 ]
机构
[1] Univ Cote Azur, INRIA, Sophia Antipolis, France
[2] Indian Stat Inst, Kolkata, India
[3] Eindhoven Univ Technol, Eindhoven, Netherlands
来源
关键词
PARAMETERIZED COMPLEXITY;
D O I
10.1007/978-3-319-77404-6_15
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Point Hyperplane Cover problem in R-d takes as input a set of n points in R-d and a positive integer k. The objective is to cover all the given points with a set of at most k hyperplanes. The D-Polynomial Points Hitting Set (D-Polynomial Points HS) problem in R-d takes as input a family F of D-degree polynomials from a vector space R in R-d, and determines whether there is a set of at most k points in R-d that hit all the polynomials in F. For both problems, we exhibit tight kernels where k is the parameter.
引用
收藏
页码:187 / 200
页数:14
相关论文
共 50 条
  • [1] NP-hardness of geometric set cover and hitting set with rectangles containing a common point
    Madireddy, Raghunath Reddy
    Mudgal, Apurva
    [J]. INFORMATION PROCESSING LETTERS, 2019, 141 : 1 - 8
  • [2] Dynamic Geometric Set Cover and Hitting Set
    Agarwal, Pankaj
    Chang, Hsien-Chih
    Suri, Subhash
    Xiao, Allen
    Xue, Jie
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2022, 18 (04)
  • [3] Dynamic Kernels for Hitting Sets and Set Packing
    Max Bannach
    Zacharias Heinrich
    Rüdiger Reischuk
    Till Tantau
    [J]. Algorithmica, 2022, 84 : 3459 - 3488
  • [4] Hitting the Target but Missing the Point
    Bjarte Bogsnes
    [J]. Controlling & Management Review, 2018, 62 (5) : 8 - 13
  • [5] Dynamic Kernels for Hitting Sets and Set Packing
    Bannach, Max
    Heinrich, Zacharias
    Reischuk, Ruediger
    Tantau, Till
    [J]. ALGORITHMICA, 2022, 84 (11) : 3459 - 3488
  • [6] Hitting the "tipping point" of TRICC?
    Cserti-Gazdewich, Christine M.
    [J]. TRANSFUSION, 2010, 50 (10) : 2076 - 2079
  • [7] Hitting the target and missing the point?
    Minhas, R.
    [J]. INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, 2009, 63 (09) : 1275 - 1277
  • [8] Smaller kernels for hitting set problems of constant arity
    Nishimura, N
    Ragde, P
    Thilikos, DM
    [J]. PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2004, 3162 : 121 - 126
  • [9] Polynomial kernels for hitting forbidden minors under structural parameterizations
    Jansen, Bart M. P.
    Pieterse, Astrid
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 841 : 124 - 166
  • [10] Computing Hitting Set Kernels By AC0-Circuits
    Max Bannach
    Till Tantau
    [J]. Theory of Computing Systems, 2020, 64 : 374 - 399