Uniqueness of weak solutions to systems of conservation laws

被引:68
|
作者
Bressan, A
LeFloch, P
机构
[1] SISSA, I-34014 Trieste, Italy
[2] Ecole Polytech, CNRS, F-91128 Palaiseau, France
[3] Ecole Polytech, CMAP, F-91128 Palaiseau, France
关键词
D O I
10.1007/s002050050068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a strictly hyperbolic n x n system of conservation laws in one space dimension: u(t) + F(u)(x) = 0. (*) Relying on the existence of the Standard Riemann Semigroup generated by (*), we establish the uniqueness of entropy-admissible weak solutions to the Cauchy problem, under a mild assumption on the variation of u along spacelike segments.
引用
收藏
页码:301 / 317
页数:17
相关论文
共 50 条
  • [1] Uniqueness of Weak Solutions to Systems of Conservation Laws
    Alberto Bressan
    Philippe LeFloch
    [J]. Archive for Rational Mechanics and Analysis, 1997, 140 : 301 - 317
  • [2] On the uniqueness of solutions to hyperbolic systems of conservation laws
    Ghoshal, Shyam Sundar
    Jana, Animesh
    Koumatos, Konstantinos
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 291 : 110 - 153
  • [3] On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels
    Coclite, Giuseppe Maria
    De Nitti, Nicola
    Keimer, Alexander
    Pflug, Lukas
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [4] Initial Layers and Uniqueness of¶Weak Entropy Solutions to¶Hyperbolic Conservation Laws
    Gui-Qiang Chen
    Michel Rascle
    [J]. Archive for Rational Mechanics and Analysis, 2000, 153 : 205 - 220
  • [5] On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels
    Giuseppe Maria Coclite
    Nicola De Nitti
    Alexander Keimer
    Lukas Pflug
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [6] Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws
    Chen, GQ
    Rascle, M
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 153 (03) : 205 - 220
  • [8] Weak solutions of general systems of hyperbolic conservation laws
    Liu, TP
    Yang, T
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 230 (02) : 289 - 327
  • [9] Weak Solutions of General Systems of Hyperbolic Conservation Laws
    Tai-Ping Liu
    Tong Yang
    [J]. Communications in Mathematical Physics, 2002, 230 : 289 - 327
  • [10] WEAK ASYMPTOTIC SOLUTIONS TO HYPERBOLIC SYSTEMS OF CONSERVATION-LAWS
    YOSHIKAWA, A
    [J]. RECENT TOPICS IN NONLINEAR PDE IV, 1989, 160 : 195 - 210