Microscopic derivation of the quadrupole collective Hamiltonian for shape coexistence/mixing dynamics

被引:18
|
作者
Matsuyanagi, Kenichi [1 ,2 ]
Matsuo, Masayuki [3 ]
Nakatsukasa, Takashi [1 ,4 ]
Yoshida, Kenichi [5 ]
Hinohara, Nobuo [4 ,6 ]
Sato, Koichi [1 ]
机构
[1] RIKEN Nishina Ctr, Wako, Saitama 3510198, Japan
[2] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[3] Niigata Univ, Dept Phys, Fac Sci, Niigata 9502181, Japan
[4] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058571, Japan
[5] Niigata Univ, Grad Sch Sci & Technol, Niigata 9502181, Japan
[6] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA
关键词
collective Hamiltonian; large-amplitude collective motion; shape coexistence; time-dependent self-consistent mean field; GENERATOR-COORDINATE METHOD; ANHARMONIC GAMMA-VIBRATIONS; HARTREE-FOCK APPROXIMATION; LARGE-AMPLITUDE MOTION; BOSON-EXPANSION THEORY; CONSISTENT MEAN-FIELD; MASS PARAMETERS; NUCLEAR-DEFORMATIONS; GAUGE-INVARIANCE; ATOMIC-NUCLEI;
D O I
10.1088/0954-3899/43/2/024006
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Assuming that the time-evolution of the self-consistent mean field is determined by five pairs of collective coordinate and collective momentum, we microscopically derive the collective Hamiltonian for low-frequency quadrupole modes of excitation. We show that the five-dimensional collective Schrodinger equation is capable of describing large-amplitude quadrupole shape dynamics seen as shape coexistence/mixing phenomena. We focus on basic ideas and recent advances of the approaches based on the time-dependent mean-field theory, but relations to other time-independent approaches are also briefly discussed.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Microscopic derivation of the Bohr-Mottelson collective Hamiltonian and its application to quadrupole shape dynamics
    Matsuyanagi, Kenichi
    Matsuo, Masayuki
    Nakatsukasa, Takashi
    Yoshida, Kenichi
    Hinohara, Nobuo
    Sato, Koichi
    PHYSICA SCRIPTA, 2016, 91 (06)
  • [2] Microscopic derivation of five-dimensional collective Hamiltonian of large-amplitude quadrupole motion: application to shape coexistence in proton-rich Se isotopes
    Hinohara, Nobuo
    Sato, Koichi
    Nakatsukasa, Takashi
    Matsuo, Masayuki
    NUCLEAR PHYSICS TRENDS, 2010, 1235 : 96 - +
  • [3] Microscopic derivation of the generalized collective Hamiltonian
    Dzyublik, A. Ya.
    Starosta, K.
    Yu, Z.
    Koike, T.
    PHYSICAL REVIEW C, 2024, 110 (01)
  • [5] Description of shape coexistence in 96Zr based on the quadrupole-collective Bohr Hamiltonian
    Sazonov, D. A.
    Kolganova, E. A.
    Shneidman, T. M.
    Jolos, R., V
    Pietralla, N.
    Witt, W.
    PHYSICAL REVIEW C, 2019, 99 (03)
  • [6] MICROSCOPIC DERIVATION OF A QUANTUM HAMILTONIAN FOR ADIABATIC COLLECTIVE MOTION
    ZELEVINSKY, VG
    NUCLEAR PHYSICS A, 1980, 337 (01) : 40 - 76
  • [7] MICROSCOPIC DERIVATION OF EFFECTIVE HAMILTONIAN FOR LOW COLLECTIVE MOVEMENTS
    ZELEVINSKII, VG
    IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1984, 48 (10): : 2054 - 2057
  • [8] Collective coordinates, shape transitions, and shape coexistence: A microscopic approach
    Nakatsukasa, T
    Walet, NR
    PHYSICAL REVIEW C, 1998, 58 (06): : 3397 - 3406
  • [9] Shape transition and coexistence in Te isotopes studied with the quadrupole collective Hamiltonian based on a relativistic energy density functional
    Suzuki, K.
    Nomura, K.
    PHYSICAL REVIEW C, 2024, 110 (06)
  • [10] Microscopic derivation of a collective bosonic Hamiltonian with the generalized density matrix method
    Jia, L. Y.
    Zelevinsky, V. G.
    PHYSICAL REVIEW C, 2011, 84 (06):