Bayesian variable selection for disease classification using gene expression data

被引:52
|
作者
Yang Ai-Jun [1 ]
Song Xin-Yuan [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Stat, Hong Kong, Hong Kong, Peoples R China
关键词
TUMOR CLASSIFICATION; CANCER; ADENOCARCINOMA; IDENTIFICATION; MULTICLASS; ALGORITHMS; PREDICTION; DISCOVERY; PROFILES;
D O I
10.1093/bioinformatics/btp638
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: An important application of gene expression microarray data is the classification of samples into categories. Accurate classification depends upon the method used to identify the most relevant genes. Owing to the large number of genes and relatively small sample size, the selection process can be unstable. Modification of existing methods for achieving better analysis of microarray data is needed. Results: We propose a Bayesian stochastic variable selection approach for gene selection based on a probit regression model with a generalized singular g-prior distribution for regression coefficients. Using simulation-based Markov chain Monte Carlo methods for simulating parameters from the posterior distribution, an efficient and dependable algorithm is implemented. It is also shown that this algorithm is robust to the choices of initial values, and produces posterior probabilities of related genes for biological interpretation. The performance of the proposed approach is compared with other popular methods in gene selection and classification via the well-known colon cancer and leukemia datasets in microarray literature.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 50 条
  • [1] Comments on 'Bayesian variable selection for disease classification using gene expression data'
    Baragatti, Meili C.
    Pommeret, Denys
    BIOINFORMATICS, 2011, 27 (08) : 1194 - 1194
  • [2] Response to "Comments on 'Bayesian variable selection for disease classification using gene expression data'"
    Song, Xin-Yuan
    Lu, Zhao-Hua
    BIOINFORMATICS, 2011, 27 (15) : 2169 - 2170
  • [3] Bayesian classification of tumours by using gene expression data
    Mallick, BK
    Ghosh, D
    Ghosh, M
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 : 219 - 234
  • [4] Gene selection for microarray gene expression classification using Bayesian Lasso quantile regression
    Algamal, Zakariya Yahya
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 97 : 145 - 152
  • [5] Gene Expression Data Classification Using Independent Variable Group Analysis
    Zheng, Chunhou
    Zhang, Lei
    Li, Bo
    Xu, Min
    ADVANCES IN NEURAL NETWORKS - ISNN 2008, PT 2, PROCEEDINGS, 2008, 5264 : 243 - +
  • [6] A model for gene selection and classification of gene expression data
    Mohamad M.S.
    Omatu S.
    Deris S.
    Hashim S.Z.M.
    Artificial Life and Robotics, 2007, 11 (2) : 219 - 222
  • [7] Feature Selection and Classification for Gene Expression Data using Evolutionary Computation
    Banka, Haider
    Dara, Suresh
    2012 23RD INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA), 2012, : 185 - 189
  • [8] Gene selection for tumor classification using microarray gone expression data
    Yendrapalli, K.
    Basnet, R.
    Mukkamala, S.
    Sung, A. H.
    WORLD CONGRESS ON ENGINEERING 2007, VOLS 1 AND 2, 2007, : 290 - +
  • [9] A Bayesian network classification methodology for gene expression data
    Helman, P
    Veroff, R
    Atlas, SR
    Willman, C
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2004, 11 (04) : 581 - 615
  • [10] Gene selection: a Bayesian variable selection approach
    Lee, KE
    Sha, NJ
    Dougherty, ER
    Vannucci, M
    Mallick, BK
    BIOINFORMATICS, 2003, 19 (01) : 90 - 97