Dynamic graph convolutional networks based on spatiotemporal data embedding for traffic flow forecasting

被引:35
|
作者
Zhang, Wenyu [1 ]
Zhu, Kun [1 ,2 ]
Zhang, Shuai [1 ]
Chen, Qian [1 ]
Xu, Jiyuan [1 ]
机构
[1] Zhejiang Univ Finance & Econ, Sch Informat Management & Artificial Intelligence, Hangzhou 310018, Peoples R China
[2] Zhejiang Univ, Sch Control Sci & Engn, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金; 浙江省自然科学基金;
关键词
Traffic flow forecasting; Spatiotemporal dependencies; Graph convolutional networks; Dynamic graph; Deep learning; Data embedding; MEMORY NEURAL-NETWORK; DEEP LEARNING-MODEL; TIME-SERIES; PREDICTION; DEMAND; SYSTEM;
D O I
10.1016/j.knosys.2022.109028
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic flow forecasting has always been a challenge owing to its complicated spatiotemporal dependencies. Few of previous works can exploit the implicit interactions among traffic flows, leading to the superficial extraction of spatiotemporal features. Though graph convolutional networks have showed exciting performance in traffic flow forecasting, existing works either ignore the dynamic characteristics of the correlations among sensors or fail to extract the hidden fine-grained correlations among sensors, which makes it difficult to model the spatial dependency deeply. Therefore, a new deep learning model is proposed in this study to overcome these drawbacks and to achieve accurate traffic flow forecasting. First, a new spatiotemporal data embedding method is proposed to convert the original traffic flows into traffic flow vectors, so that the implicit correlations among traffic flows can be quantified and measured. Then, to sufficiently extract the non-linear global temporal features, a new temporal vector convolutional neural network is proposed to deal with the traffic flow vectors. Finally, a new dynamic correlation graph construction method is proposed to exploit the dynamic characteristics of correlations among sensors and explore the hidden fine-grained correlations among sensors, which is conducive to learning deep non-Euclidean spatial features. Experiments on five traffic datasets demonstrate that the proposed model is superior to state-of-the-art baseline models. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Dynamic graph convolutional networks based on spatiotemporal data embedding for traffic flow forecasting
    Zhang, Wenyu
    Zhu, Kun
    Zhang, Shuai
    Chen, Qian
    Xu, Jiyuan
    Knowledge-Based Systems, 2022, 250
  • [2] Spatiotemporal dynamic graph convolutional network for traffic speed forecasting
    Yin, Xiang
    Zhang, Wenyu
    Zhang, Shuai
    INFORMATION SCIENCES, 2023, 641
  • [3] Spatiotemporal multi-graph convolutional networks with synthetic data for traffic volume forecasting
    Zhu, Kun
    Zhang, Shuai
    Li, Jiusheng
    Zhou, Di
    Dai, Hua
    Hu, Zeqian
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 187
  • [4] Attention based spatiotemporal graph attention networks for traffic flow forecasting
    Wang, Yi
    Jing, Changfeng
    Xu, Shishuo
    Guo, Tao
    INFORMATION SCIENCES, 2022, 607 : 869 - 883
  • [5] Dynamic Graph Convolutional Recurrent Network With Spatiotemporal Category Information Embedding for Traffic Flow Prediction
    Zhu, Guodong
    Niu, Yunyun
    Du, Songzhi
    Wang, Pengcheng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (24): : 39473 - 39486
  • [6] Graph convolution networks based on adaptive spatiotemporal attention for traffic flow forecasting
    Xiao, Hongbo
    Zou, Beiji
    Xiao, Jianhua
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [7] Dynamic spatial-temporal graph convolutional recurrent networks for traffic flow forecasting
    Xia, Zhichao
    Zhang, Yong
    Yang, Jielong
    Xie, Linbo
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 240
  • [8] Dynamic Spatial-Temporal Perception Graph Convolutional Networks for Traffic Flow Forecasting
    Cao, Jingsi
    Liu, Weibin
    Xing, Weiwei
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT II, 2025, 15032 : 347 - 360
  • [9] Spatiotemporal Data Fusion in Graph Convolutional Networks for Traffic Prediction
    Zhao, Baoxin
    Gao, Xitong
    Liu, Jianqi
    Zhao, Juanjuan
    Xu, Chengzhong
    IEEE ACCESS, 2020, 8 : 76632 - 76641
  • [10] Spatial dynamic graph convolutional network for traffic flow forecasting
    Li, Huaying
    Yang, Shumin
    Song, Youyi
    Luo, Yu
    Li, Junchao
    Zhou, Teng
    APPLIED INTELLIGENCE, 2023, 53 (12) : 14986 - 14998