Blocked Stochastic sampling versus estimation of distribution algorithms

被引:0
|
作者
Santana, R [1 ]
Mühlenbein, H [1 ]
机构
[1] ICIMAF, CP-10400 Havana, Cuba
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Boltzmann distribution is a good candidate for a search distribution for optimization problems. In this paper we compare two methods to approximate the Boltzmann distribution-Estimation of Distribution Algorithm's (EDA) and Markov Chain Monte Carlo methods (MCMC). It turns out that in the space of binary functions even blocked MCMC methods outperform EDA on a small class of problems only. In these cases a temperature of T = 0 performed best.
引用
收藏
页码:1390 / 1395
页数:6
相关论文
共 50 条
  • [1] Estimation of Distribution Algorithms with Fuzzy Sampling for Stochastic Programming Problems
    Hedar, Abdel-Rahman
    Allam, Amira A.
    Fahim, Alaa
    APPLIED SCIENCES-BASEL, 2020, 10 (19): : 1 - 27
  • [2] Stochastic sampling algorithms for state estimation of jump Markov linear systems
    Doucet, A
    Logothetis, A
    Krishnamurthy, V
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (02) : 188 - 202
  • [3] Heuristic based sampling in estimation of distribution algorithms:: An initial approach
    de la Ossa, L
    Gámez, JA
    Puerta, JM
    CURRENT TOPICS IN ARTIFICIAL INTELLIGENCE, 2004, 3040 : 384 - 393
  • [4] State estimation of jump Markov linear systems via stochastic sampling algorithms
    Doucet, A
    Logothetis, A
    Krishnamurthy, V
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 2305 - 2310
  • [5] State estimation of jump Markov linear systems via stochastic sampling algorithms
    Univ of Cambridge, Cambridge, United Kingdom
    Proc IEEE Conf Decis Control, (2305-2310):
  • [6] A study of the effects of dimensionality on stochastic hill climbers and estimation of distribution algorithms
    Grosset, L
    Le Riche, R
    Haftka, RT
    ARTIFICIAL EVOLUTION, 2004, 2936 : 27 - 38
  • [7] Sampling Bias in Estimation of Distribution Algorithms for Genetic Programming Using Prototype Trees
    Kim, Kangil
    McKay, Bob R. I.
    Punithan, Dharani
    PRICAI 2010: TRENDS IN ARTIFICIAL INTELLIGENCE, 2010, 6230 : 100 - 111
  • [8] Rare event sampling with stochastic growth algorithms
    Prellberg, Thomas
    ICNP'1 - 1ST INTERNATIONAL CONFERENCE ON NUMERICAL PHYSICS, 2012, 44
  • [9] Comparison of Stochastic Sampling Algorithms for Uncertainty Quantification
    Mohamed, Linah
    Christie, Mike
    Demyanov, Vasily
    SPE JOURNAL, 2010, 15 (01): : 31 - 38
  • [10] Stochastic approximation algorithms for superquantiles estimation
    Bercu, Bernard
    Costa, Manon
    Gadat, Sebastien
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26