Chromosome-level genome assembly of the predator Propylea japonica to understand its tolerance to insecticides and high temperatures

被引:46
|
作者
Zhang, Lijuan [1 ,2 ]
Li, Song [3 ]
Luo, Junyu [1 ,2 ]
Du, Pei [4 ]
Wu, Linke [1 ,2 ]
Li, Yarong [1 ,2 ]
Zhu, Xiangzhen [1 ,2 ]
Wang, Li [1 ,2 ]
Zhang, Shuai [1 ,2 ]
Cui, Jinjie [1 ,2 ]
机构
[1] Zhengzhou Univ, State Key Lab Cotton Biol, Zhengzhou Res Base, Zhengzhou, Henan, Peoples R China
[2] Chinese Acad Agr Sci, Inst Cotton Res, State Key Lab Cotton Biol, Anyang, Peoples R China
[3] Biomarker Technol Corp, Beijing, Peoples R China
[4] Henan Acad Agr Sci, Key Lab Oil Crops Huang Huai Hai Plains, Henan Prov Key Lab Oil Crops Improvement, Ind Crops Res Inst,Minist Agr, Zhengzhou, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
chromosome-level genome; functional annotation; PacBio sequencing; Propylea japonica; stress-resistance; RHIPICEPHALUS BOOPHILUS MICROPLUS; COLEOPTERA-COCCINELLIDAE; CLASSIFICATION-SYSTEM; PHYLOGENETIC ANALYSIS; MITOCHONDRIAL GENOME; RNA INTERFERENCE; DIVERGENCE TIMES; FLOW-CYTOMETRY; CATTLE TICK; DATABASE;
D O I
10.1111/1755-0998.13100
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ladybird beetle Propylea japonica is an important natural enemy in agro-ecological systems. Studies on the strong tolerance of P. japonica to high temperatures and insecticides, and its population and phenotype diversity have recently increased. However, abundant genome resources for obtaining insights into stress-resistance mechanisms and genetic intra-species diversity for P. japonica are lacking. Here, we constructed the P. japonica genome maps using Pacific Bioscience (PacBio) and Illumina sequencing technologies. The genome size was 850.90 Mb with a contig N50 of 813.13 kb. The Hi-C sequence data were used to upgrade draft genome assemblies; 4,777 contigs were assembled to 10 chromosomes; and the final draft genome assembly was 803.93 Mb with a contig N50 of 813.98 kb and a scaffold N50 of 100.34 Mb. Approximately 495.38 Mb of repeated sequences was annotated. The 18,018 protein-coding genes were predicted, of which 95.78% were functionally annotated, and 1,407 genes were species-specific. The phylogenetic analysis showed that P. japonica diverged from the ancestor of Anoplophora glabripennis and Tribolium castaneum similar to 236.21 million years ago. We detected that some important gene families involved in detoxification of pesticides and tolerance to heat stress were expanded in P. japonica, especially cytochrome P450 and Hsp70 genes. Overall, the high-quality draft genome sequence of P. japonica will provide invaluable resource for understanding the molecular mechanisms of stress resistance and will facilitate the research on population genetics, evolution and phylogeny of Coccinellidae. This genome will also provide new avenues for conserving the diversity of predator insects.
引用
收藏
页码:292 / 307
页数:16
相关论文
共 50 条
  • [1] Chromosome-level genome assembly and characterization of Sophora Japonica
    Lei, Weixiao
    Wang, Zefu
    Cao, Man
    Zhu, Hui
    Wang, Min
    Zou, Yi
    Han, Yunchun
    Wang, Dandan
    Zheng, Zeyu
    Li, Ying
    Liu, Bingbing
    Ru, Dafu
    DNA RESEARCH, 2022, 29 (03)
  • [2] Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome
    Jiang, Shuang
    An, Haishan
    Xu, Fangjie
    Zhang, Xueying
    GIGASCIENCE, 2020, 9 (03):
  • [3] Chromosome-level Genome Assembly of Theretra japonica (Lepidoptera: Sphingidae)
    Yan, Ming
    Su, Bao-Shan
    Huang, Yi-Xin
    Xu, Zhen-Bang
    Jiang, Zhuo-Heng
    Wang, Xu
    SCIENTIFIC DATA, 2024, 11 (01)
  • [4] Chromosome-level genome assembly of the common chiton, Liolophura japonica (Lischke, 1873)
    Hui, Jerome H. L.
    Hong Kong Biodiversity Genomics Consortium
    Chan, Ting Fung
    Chan, Leo Lai
    Cheung, Siu Gin
    Cheang, Chi Chiu
    Fang, James Kar-Hei
    Gaitan-Espitia, Juan Diego
    Lau, Stanley Chun Kwan
    Sung, Yik Hei
    Wong, Chris Kong Chu
    Yip, Kevin Yuk-Lap
    Wei, Yingying
    Au, Ming Fung Franco
    So, Wai Lok
    Nong, Wenyan
    Hui, Tin Yan
    Leung, Brian Kai Hin
    Williams, Gray A.
    GIGABYTE, 2024, 2024
  • [5] A chromosome-level genome assembly of Caligula japonica as a resource for evolutionary studies in Lepidoptera
    Chen, Xu
    Chen, Yong-Ming
    Wang, Su
    Ye, Xin-Hai
    Chen, Meng-Yao
    Zang, Lian-Sheng
    ENTOMOLOGIA GENERALIS, 2023, 43 (06) : 1183 - 1192
  • [6] Chromosome-level genome assembly for the ecologically and economically important alga Saccharina japonica
    Li, Xiaodong
    Li, Yu-Long
    Zhong, Chenhui
    Li, Jing
    Su, Li
    Liu, Jin-Xian
    Pang, Shaojun
    SCIENTIFIC DATA, 2025, 12 (01)
  • [7] A chromosome-level genome assembly of Plantago ovata
    Herliana, Lina
    Schwerdt, Julian G.
    Neumann, Tycho R.
    Severn-Ellis, Anita
    Phan, Jana L.
    Cowley, James M.
    Shirley, Neil J.
    Tucker, Matthew R.
    Bianco-Miotto, Tina
    Batley, Jacqueline
    Watson-Haigh, Nathan S.
    Burton, Rachel A.
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [8] Chromosome-level genome assembly of Salvia sclarea
    Choi, Sehyun
    Kang, Yuna
    Kim, Changsoo
    SCIENTIFIC DATA, 2025, 12 (01)
  • [9] A chromosome-level genome assembly of Plantago ovata
    Lina Herliana
    Julian G. Schwerdt
    Tycho R. Neumann
    Anita Severn-Ellis
    Jana L. Phan
    James M. Cowley
    Neil J. Shirley
    Matthew R. Tucker
    Tina Bianco-Miotto
    Jacqueline Batley
    Nathan S. Watson-Haigh
    Rachel A. Burton
    Scientific Reports, 13 (1)
  • [10] Chromosome-level genome assembly of the cashmere goat
    Wang, Zhiying
    Lv, Qi
    Li, Wenze
    Huang, Wanlong
    Gong, Gao
    Yan, Xiaochun
    Liu, Baichuan
    Chen, Oljibilig
    Wang, Na
    Zhang, Yanjun
    Wang, Ruijun
    Li, Jinquan
    Tian, Shilin
    Su, Rui
    SCIENTIFIC DATA, 2024, 11 (01)