MCPSO: A multi-swarm cooperative particle swarm optimizer

被引:195
|
作者
Niu, Ben
Zhu, Yunlong
He, Xiaoxian
Wu, Henry
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, Fac Off 2, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
[3] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
基金
中国国家自然科学基金;
关键词
particle swarm optimization; multi-swarm; master-slave model; MCPSO;
D O I
10.1016/j.amc.2006.07.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new optimization algorithm - MCPSO, multi-swarm cooperative particle swarm optimizer, inspired by the phenomenon of symbiosis in natural ecosystems. MCPSO is based on a master-slave model, in which a population consists of one master swarm and several slave swarms. The slave swarms execute a single PSO or its variants independently to maintain the diversity of particles, while the master swarm evolves based on its own knowledge and also the knowledge of the slave swarms. According to the co-evolutionary relationship between master swarm and slave swarms, two versions of MCPSO are proposed, namely the competitive version of MCPSO (COM-MCPSO) and the collaborative version of MCPSO (COL-MCPSO), where the master swarm enhances its particles based on an antagonistic scenario or a synergistic scenario, respectively. In the simulation studies, several benchmark functions are performed, and the performances of the proposed algorithms are compared with the standard PSO (SPSO) and its variants to demonstrate the superiority of MCPSO. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1050 / 1062
页数:13
相关论文
共 50 条
  • [1] Enhanced multi-swarm cooperative particle swarm optimizer
    Lu, Jiawei
    Zhang, Jian
    Sheng, Jianan
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2022, 69
  • [2] Dynamic multi-swarm particle swarm optimizer with cooperative learning strategy
    Xu, Xia
    Tang, Yinggan
    Li, Junpeng
    Hua, Changchun
    Guan, Xinping
    [J]. APPLIED SOFT COMPUTING, 2015, 29 : 169 - 183
  • [3] A multi-swarm cooperative multistage perturbation guiding particle swarm optimizer
    Zhao, Xinchao
    Liu, Ziyang
    Yang, Xiangjun
    [J]. APPLIED SOFT COMPUTING, 2014, 22 : 77 - 93
  • [4] Dynamic multi-swarm particle swarm optimizer
    Liang, JJ
    Suganthan, PN
    [J]. 2005 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2005, : 124 - 129
  • [5] Handling multi-objective optimization problems with a multi-swarm cooperative particle swarm optimizer
    Zhang, Yong
    Gong, Dun-wei
    Ding, Zhong-hai
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (11) : 13933 - 13941
  • [6] Dynamic multi-swarm particle swarm optimizer with local search
    Liang, JJ
    Suganthan, PN
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 522 - 528
  • [7] Dynamic multi-swarm particle swarm optimizer with harmony search
    Zhao, S. -Z.
    Suganthan, P. N.
    Pan, Quan-Ke
    Tasgetiren, M. Fatih
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 3735 - 3742
  • [8] Dynamic multi-swarm differential learning particle swarm optimizer
    Chen, Yonggang
    Li, Lixiang
    Peng, Haipeng
    Xiao, Jinghua
    Wu, Qingtao
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2018, 39 : 209 - 221
  • [9] A Multi-Swarm Cooperative Perturbed Particle Swarm Optimization
    Yang, Xiangjun
    Zhao, Yilong
    Chen, Yuchuang
    Zhao, Xinchao
    [J]. ADVANCED RESEARCH ON AUTOMATION, COMMUNICATION, ARCHITECTONICS AND MATERIALS, PTS 1 AND 2, 2011, 225-226 (1-2): : 619 - 622
  • [10] Multi-Swarm Particle Swarm Optimizer with Mutation and Its Research in Biomedical Information Classification Optimizer
    Li, Mi
    Chen, Huan
    Zhang, Ming
    Liu, Xingwang
    Lu, Shengfu
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2018, 8 (08) : 1619 - 1626