Machine Learning Aided Electronic Warfare System

被引:2
|
作者
McWhorter, Tanner [1 ]
Morys, Marcin [2 ]
Severyn, Stacie [2 ]
Stevens, Sean [2 ]
Chan, Louis [2 ]
Cheng, Chi-Hao [1 ]
机构
[1] Miami Univ, Dept Elect & Comp Engn, Oxford, OH 45056 USA
[2] US Air Force, Res Lab, Dayton, OH 45433 USA
来源
IEEE ACCESS | 2021年 / 9卷
关键词
Radar; Fuzzy logic; Decision trees; Machine learning; Entropy; Radar countermeasures; Training data; Electronic warfare; machine leaning; fuzzy logic; decision tree; ID3; Long Short-Term Memory (LSTM);
D O I
10.1109/ACCESS.2021.3093569
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, a machine learning aided electronic warfare (EW) system is presented and the simulation results are discussed. The developed EW system uses an automatic decision tree generator to create engagement protocol and a fuzzy logic model to quantify threat levels. A long-short term memory (LSTM) neural network was also trained to predict the next signal set of multifunction radars. The simulation results demonstrate the effectiveness of the developed EW system's ability to engage multiple multifunction radars.
引用
收藏
页码:94691 / 94699
页数:9
相关论文
共 50 条
  • [1] Applications of Machine Learning for Electronic Warfare Emitter Identification and Resource Management
    Casterline, Kyle A.
    Watkins, Nicholas J.
    Ward, Jon R.
    Li, William
    Thommana, Matthew J.
    [J]. Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 2022, 36 (02): : 121 - 140
  • [2] Applications of Machine Learning for Electronic Warfare Emitter Identification and Resource Management
    Casterline, Kyle A.
    Watkins, Nicholas J.
    Ward, Jon R.
    Li, William
    Thommana, Matthew J.
    [J]. JOHNS HOPKINS APL TECHNICAL DIGEST, 2022, 36 (02): : 121 - 140
  • [3] System of Electronic Warfare with UAVs
    Tkachenko, O. Y.
    [J]. 2015 IEEE 3RD INTERNATIONAL CONFERENCE ACTUAL PROBLEMS OF UNMANNED AERIAL VEHICLES DEVELOPMENTS (APUAVD), 2015, : 324 - 327
  • [4] Machine-Learning-Aided Optical Fiber Communication System
    Pan, Xiaolong
    Wang, Xishuo
    Tian, Bo
    Wang, Chuxuan
    Zhang, Hongxin
    Guizani, Mohsen
    [J]. IEEE NETWORK, 2021, 35 (04): : 136 - 142
  • [5] Computer Aided Diagnosis System of Electromyogram Based on Machine Learning
    Li, Zechen
    Tang, Yuqi
    Liu, Tao
    Yang, Dongdong
    [J]. BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 126 : 61 - 61
  • [6] An Introduction of Cognitive Electronic Warfare System
    Zhou, Huaji
    [J]. COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL III: SYSTEMS, 2020, 517 : 1202 - 1210
  • [7] Machine learning aided modelling of thermomechanical fatigue of solder joints in electronic component assemblies
    Voet, Vincent
    Van Loock, Frederik
    De Fruytier, Christophe
    Simar, Aude
    Pardoen, Thomas
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2023, 167
  • [8] A Survey of Adversarial Machine Learning in Cyber Warfare
    Duddu, Vasisht
    [J]. DEFENCE SCIENCE JOURNAL, 2018, 68 (04) : 356 - 366
  • [9] Machine learning and soil sciences: a review aided by machine learning tools
    Padarian, Jose
    Minasny, Budiman
    Mcbratney, Alex B.
    [J]. SOIL, 2020, 6 (01) : 35 - 52
  • [10] Machine learning aided multiscale magnetostatics
    Aldakheel, Fadi
    Soyarslan, Celal
    Palanisamy, Hari Subramani
    Elsayed, Elsayed Saber
    [J]. MECHANICS OF MATERIALS, 2023, 184