THREE-DIMENSIONAL LOOPS AS SECTIONS IN A FOUR-DIMENSIONAL SOLVABLE LIE GROUP

被引:0
|
作者
Figula, A. [1 ]
机构
[1] Univ Debrecen, Inst Math, POB 12, H-4010 Debrecen, Hungary
来源
基金
匈牙利科学研究基金会;
关键词
topological loops; sharply transitive sections in groups; multiplication group of loops; solvable Lie groups; CONNECTED TRANSVERSALS; MULTIPLICATION GROUPS; SUBGROUPS; ALGEBRAS; PRODUCT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify all three-dimensional connected topological loops such that the group topologically generated by their left translations is the four-dimensional connected Lie group G which has trivial center and precisely two onedimensional normal subgroups. We show that G is not the multiplication group of connected topological proper loops.
引用
收藏
页码:146 / 158
页数:13
相关论文
共 50 条
  • [2] Topological loops with three-dimensional solvable left translation group
    Ágota Figula
    [J]. Aequationes mathematicae, 2010, 79 : 83 - 97
  • [3] Three-dimensional and four-dimensional printing in otolaryngology
    Irene Chiesa
    Carmelo De Maria
    Giovanni Vozzi
    Riccardo Gottardi
    [J]. MRS Bulletin, 2023, 48 : 676 - 687
  • [4] Three-dimensional and four-dimensional printing in otolaryngology
    Chiesa, Irene
    De Maria, Carmelo
    Vozzi, Giovanni
    Gottardi, Riccardo
    [J]. MRS BULLETIN, 2023, 48 (06) : 676 - 687
  • [5] THREE-DIMENSIONAL DYNAMICAL SYSTEMS WITH FOUR-DIMENSIONAL VESSIOT-GULDBERG-LIE ALGEBRAS
    Ibragimov, Nail H.
    Gainetdinova, Aliya A.
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (03): : 872 - 883
  • [6] Variationality of four-dimensional Lie group connections
    Ghanam, R
    Thompson, G
    Miller, EJ
    [J]. JOURNAL OF LIE THEORY, 2004, 14 (02) : 395 - 425
  • [7] On the correspondence between the three- and four-dimensional parameters of the three-dimensional rotation group
    S. E. Perelyaev
    [J]. Mechanics of Solids, 2009, 44 : 204 - 213
  • [8] On the correspondence between the three- and four-dimensional parameters of the three-dimensional rotation group
    Perelyaev, S. E.
    [J]. MECHANICS OF SOLIDS, 2009, 44 (02) : 204 - 213
  • [9] Invariant Strong KT Geometry on Four-Dimensional Solvable Lie Groups
    Madsen, Thomas Bruun
    Swann, Andrew
    [J]. JOURNAL OF LIE THEORY, 2011, 21 (01) : 55 - 70
  • [10] Locally conformally Kahler structures on four-dimensional solvable Lie algebras
    Angella, Daniele
    Origlia, Marcos
    [J]. COMPLEX MANIFOLDS, 2020, 7 (01): : 1 - 35