A Framework for Stochastic and Surrogate-Assisted Optimization using Sequential Modular Process Simulators

被引:4
|
作者
Penteado, Alberto T. [1 ]
Esche, Erik [1 ]
Weigert, Joris [1 ]
Repke, Jens-Uwe [1 ]
机构
[1] Tech Univ Berlin, Grp Proc Dynam & Operat, Sekretariat KWT 9, Str 17 Juni 135, D-10623 Berlin, Germany
关键词
sequential optimization; black-box optimization; stochastic optimization; surrogate-assisted optimization; probability of improvement; GLOBAL OPTIMIZATION; ALGORITHM;
D O I
10.1016/B978-0-12-823377-1.50318-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A Python framework is introduced enabling automated simulation and stochastic and surrogate-assisted optimization (SAO) using Aspen Plus flowsheets. A new modification to the Probability of Improvement method for SAO is proposed to handle non-converged simulations. Two chemical engineering optimization problems are solved using gradient-based, stochastic, and the new SAO algorithms.
引用
收藏
页码:1903 / 1908
页数:6
相关论文
共 50 条
  • [1] Surrogate-assisted reliability-based design optimization: a survey and a unified modular framework
    Moustapha, Maliki
    Sudret, Bruno
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (05) : 2157 - 2176
  • [2] Surrogate-assisted reliability-based design optimization: a survey and a unified modular framework
    Maliki Moustapha
    Bruno Sudret
    [J]. Structural and Multidisciplinary Optimization, 2019, 60 : 2157 - 2176
  • [3] Surrogate-assisted fault detection framework for dynamic process
    Kiran, Baru Chandra
    Dutta, Arnab
    [J]. IFAC PAPERSONLINE, 2022, 55 (07): : 726 - 731
  • [4] Iterative Process Design with Surrogate-Assisted Global Flowsheet Optimization
    Janus, Tim
    Engell, Sebastian
    [J]. CHEMIE INGENIEUR TECHNIK, 2021, 93 (12) : 2019 - 2028
  • [5] A surrogate-assisted stochastic optimization inversion algorithm: Parameter identification of dams
    Li, YiFei
    Hariri-Ardebili, M. Amin
    Deng, TongFa
    Wei, QingYang
    Cao, MaoSen
    [J]. ADVANCED ENGINEERING INFORMATICS, 2023, 55
  • [6] Multi-Objective Surrogate-Assisted Stochastic Optimization for Engine Calibration
    Pal, Anuj
    Wang, Yan
    Zhu, Ling
    Zhu, Guoming G.
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2021, 143 (10):
  • [7] A dynamic surrogate-assisted evolutionary algorithm framework for expensive structural optimization
    Yu, Mingyuan
    Li, Xia
    Liang, Jing
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (02) : 711 - 729
  • [8] A dynamic surrogate-assisted evolutionary algorithm framework for expensive structural optimization
    Mingyuan Yu
    Xia Li
    Jing Liang
    [J]. Structural and Multidisciplinary Optimization, 2020, 61 : 711 - 729
  • [9] Performance of Surrogate-Assisted Optimization for Antennas
    Zhang, Zhen
    Cheng, Qingsha S.
    [J]. 2022 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS, IMWS-AMP, 2022,
  • [10] Surrogate-Assisted Evolutionary Framework for Data-Driven Dynamic Optimization
    Luo, Wenjian
    Yi, Ruikang
    Yang, Bin
    Xu, Peilan
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2019, 3 (02): : 137 - 150