Effectiveness of Thermal Properties in Thermal Energy Storage Modeling

被引:2
|
作者
Sevilla, Law Torres [1 ]
Radulovic, Jovana [1 ]
机构
[1] Univ Portsmouth, Portsmouth, Hants, England
关键词
thermal properties; Energy storage (ES); phase change material; PCM; COMSOL; numerical modeling; PHASE-CHANGE MATERIALS; HEAT-STORAGE; PERFORMANCE; BUILDINGS; TUBE;
D O I
10.3389/fmech.2021.690793
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper studies the influence of material thermal properties on the charging dynamics in a low temperature Thermal Energy Storage, which combines sensible and latent heat. The analysis is based on a small scale packed bed with encapsulated PCMs, numerically solved using COMSOL Multiphysics. The PCMs studied are materials constructed based on typical thermal properties (melting temperature, density, specific heat capacity (solid and liquid), thermal conductivity (solid and liquid) and the latent heat) of storage mediums in literature. The range of values are: 25-65 degrees C for the melting temperature, 10-500 kJ/kg for the latent heat, 600-1,000 kg/m(3) for the density, 0.1-0.4 W/mK (solid and liquid) for the thermal conductivity and 1,000-2,200 J/kgK (solid and liquid) for the specific heat capacity. The temperature change is monitored at three different positions along the tank. The system consists of a 2D tank with L/D ratio of 1 at a starting temperature of 20 degrees C. Water, as the heat transfer fluid, enters the tank at 90 degrees C. Results indicate that latent heat is a leading parameter in the performance of the system, and that the thermal properties of the PCM in liquid phase influence the overall heat absorption more than its solid counterpart.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] PROGRESS IN THERMAL ENERGY STORAGE MODELING
    Bharathan, Desikan
    Glatzmaier, Greg C.
    [J]. ES2009: PROCEEDINGS OF THE ASME 3RD INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, VOL 2, 2009, : 597 - 603
  • [2] Discharge effectiveness of thermal energy storage systems
    Rodrigues, Fernando A.
    de Lemos, Marcelo J. S.
    [J]. APPLIED THERMAL ENGINEERING, 2022, 209
  • [3] The effectiveness of night ventilation for the thermal balance of an aquifer thermal energy storage
    Bozkaya, Basar
    Zeiler, Wim
    [J]. APPLIED THERMAL ENGINEERING, 2019, 146 : 190 - 202
  • [4] INVESTIGATION OF THERMAL PROPERTIES IN NANOFLUIDS FOR THERMAL ENERGY STORAGE APPLICATIONS
    Zabalegui, Aitor
    Tong, Bernadette
    Lee, Hohyun
    [J]. PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE - 2013, VOL 1, 2014,
  • [5] Graphene Thermal Properties: Applications in Thermal Management and Energy Storage
    Renteria, Jackie D.
    Nika, Denis L.
    Balandin, Alexander A.
    [J]. APPLIED SCIENCES-BASEL, 2014, 4 (04): : 525 - 547
  • [6] Mathematical modeling of thermal energy storage tank
    Jamali, Hossein
    Abdollahi, Milad
    Bayareh, Seyyedmorteza
    [J]. INTERNATIONAL JOURNAL OF ADVANCED BIOTECHNOLOGY AND RESEARCH, 2016, 7 : 723 - 729
  • [7] NUMERICAL MODELING OF THERMAL ENERGY STORAGE SYSTEM
    Bellan, Selvan
    Gonzalez-Aguilar, Jose
    Romero, Manuel
    Rahman, Muhammad M.
    Goswami, D. Yogi
    Stefanakos, Elias K.
    [J]. PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2014, VOL 2, 2014,
  • [8] Multizone Modeling for Hybrid Thermal Energy Storage
    Jaeger, Sarah
    Pabst, Valerie
    Renze, Peter
    [J]. ENERGIES, 2024, 17 (12)
  • [9] Modeling and control of a solar thermal power plant with thermal energy storage
    Powell, Kody M.
    Edgar, Thomas F.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2012, 71 : 138 - 145
  • [10] Optimising PCM thermal storage systems for maximum energy storage effectiveness
    Amin, N. A. M.
    Belusko, M.
    Bruno, F.
    Liu, M.
    [J]. SOLAR ENERGY, 2012, 86 (09) : 2263 - 2272