Solution asymptotics at large times for the non-linear Schrodinger equation

被引:8
|
作者
Naumkin, PI [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Chair Gen Math, Moscow 117234, Russia
关键词
D O I
10.1070/IM1997v061n04ABEH000137
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a spatially uniform asymptotic representation at large times of the solution to the Cauchy problem for the non-linear Schrodinger equation. If the non-linear term decreases in time faster than the linear terms, then the asymptotics are quasi-linear. Of particular interest is the case in which the non-linearity decreases in time at the same rate as or even more slowly than the linear terms and thus has a stronger effect on the solution asymptotics at large times. In this paper we employ an appropriate change of variables to reduce this case to the quasi-linear one. Namely, we derive an integral equation with rapidly decreasing non-linearity for the new unknown function, which can be solved by the method of successive approximations. Thus, we have a constructive algorithm for calculating the asymptotics of the solution to the Cauchy problem for the non-linear Schrodinger equation from the initial data.
引用
收藏
页码:757 / 794
页数:38
相关论文
共 50 条
  • [1] Higher order asymptotics of the modified non-linear Schrodinger equation
    Vartanian, AH
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (5-6) : 1043 - 1098
  • [2] EXACT SOLUTION FOR A DERIVATIVE NON-LINEAR SCHRODINGER EQUATION
    KAUP, DJ
    NEWELL, AC
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (04) : 798 - 801
  • [3] A SOLUTION OF THE GENERALIZED NON-LINEAR SCHRODINGER-EQUATION
    STENFLO, L
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (09): : L499 - L500
  • [4] ASYMPTOTICS AS T-] INFINITY OF THE SOLUTION OF THE CAUCHY-PROBLEM FOR THE NON-LINEAR SCHRODINGER-EQUATION
    NOVOKSHENOV, VI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1980, 251 (04): : 799 - 802
  • [5] ASYMPTOTICS OF SCHRODINGER NON-LINEAR EQUATION SOLUTIONS AND ISOMONODROMIC DEFORMATIONS OF THE LINEAR-DIFFERENTIAL EQUATION SYSTEMS
    ITS, AR
    [J]. DOKLADY AKADEMII NAUK SSSR, 1981, 261 (01): : 14 - 18
  • [6] INVARIANTS OF THE NON-LINEAR SCHRODINGER EQUATION
    JOHNSON, SF
    LONNGREN, KE
    NICHOLSON, DR
    [J]. PHYSICS LETTERS A, 1979, 74 (06) : 393 - 394
  • [7] NON-LINEAR SCHRODINGER-EQUATION, POTENTIAL NON-LINEAR SCHRODINGER-EQUATION AND SOLITON-SOLUTIONS
    BOITI, M
    LADDOMADA, C
    PEMPINELLI, F
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1982, 68 (03): : 236 - 248
  • [8] NON-LINEAR SCHRODINGER EQUATION WITH NON LOCAL INTERACTION
    GINIBRE, J
    VELO, G
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (14): : 683 - 685
  • [9] The non-linear Schrodinger equation with a periodic δ-interaction
    Pava, Jaime Angulo
    Ponce, Gustavo
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (03): : 497 - 551
  • [10] On the variational principle for the non-linear Schrodinger equation
    Mihalka, Zsuzsanna E.
    Margocsy, Adam
    Szabados, Agnes
    Surjan, Peter R.
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (01) : 340 - 351