Multiple linear regression model under nonnormality

被引:56
|
作者
Islam, MQ [1 ]
Tiku, ML
机构
[1] Cankaya Univ, Dept Econ, TR-06530 Ankara, Turkey
[2] Middle E Tech Univ, Dept Stat, TR-06531 Ankara, Turkey
[3] McMaster Univ, Hamilton, ON L8S 4L8, Canada
关键词
multiple linear regression; modified likelihood; robustness; outliers; M estimators; least squares; nonnormality; hypothesis testing;
D O I
10.1081/STA-200031519
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider multiple linear regression models under nonnormality. We derive modified maximum likelihood estimators (MMLEs) of the parameters and show that they are efficient and robust. We show that the least squares esimators are considerably less efficient. We compare the efficiencies of the MMLEs and the M estimators for symmetric distributions and show that, for plausible alternatives to an assumed distribution, the former are more efficient. We provide real-life examples.
引用
收藏
页码:2443 / 2467
页数:25
相关论文
共 50 条
  • [1] A model of multiple linear regression
    Popescu, Ciprian
    Giuclea, Marius
    [J]. PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2007, 8 (02): : 137 - 144
  • [3] Linear regression under model uncertainty
    Yang, Shuzhen
    Yao, Jianfeng
    [J]. PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2023, 8 (04) : 523 - 546
  • [4] Statistical disclosure control via sufficiency under the multiple linear regression model
    Klein, Martin Daniel
    Datta, Gauri Sankar
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2018, 12 (01) : 100 - 110
  • [5] Asymptotic expansion in reduced rank regression under normality and nonnormality
    Ogasawara, Haruhiko
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (07) : 1051 - 1070
  • [6] On the coefficient of multiple determination in a linear regression model
    Nabendu Pal
    Wooi K. Lim
    [J]. Journal of the Italian Statistical Society, 1998, 7 (2): : 129 - 157
  • [7] A multiple linear regression model for imprecise information
    Maria Brigida Ferraro
    Paolo Giordani
    [J]. Metrika, 2012, 75 : 1049 - 1068
  • [8] Permutation test for a multiple linear regression model
    Tantawanich, Siriwan
    Siripanich, Pachitjanut
    [J]. PROCEEDINGS OF THE 11TH ANNUAL CONFERENCE OF ASIA PACIFIC DECISION SCIENCES INSTITUTE: INNOVATION & SERVICE EXCELLENCE FOR COMPETITIVE ADVANTAGE IN THE GLOBAL ENVIRONMENT, 2006, : 362 - +
  • [9] A multiple linear regression model for imprecise information
    Ferraro, Maria Brigida
    Giordani, Paolo
    [J]. METRIKA, 2012, 75 (08) : 1049 - 1068
  • [10] A comparison of linear and mixture models for discriminant analysis under nonnormality
    Joseph R. Rausch
    Ken Kelley
    [J]. Behavior Research Methods, 2009, 41 : 85 - 98