The lattice Boltzmann method for nearly incompressible flows

被引:0
|
作者
Lallemand, Pierre [1 ]
Luo, Li-Shi [1 ,2 ]
Krafczyk, Manfred [3 ]
Yong, Wen-An [1 ,4 ]
机构
[1] Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
[3] Tech Univ Carolo Wilhelmina Braunschweig, Inst Computat Modeling Civil Engn iRMB, Pockelsstr 3, D-38106 Braunschweig, Germany
[4] Tsinghua Univ, Zhou Pei Yuan Ctr Appl Math, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Lattice Boltzmann equation; Nearly incompressible Navier-Stokes equations; Convergence; Stability; Local analysis and equivalent equations; Boundary conditions; DISCRETE-VELOCITY MODELS; REYNOLDS-NUMBER FLOW; IMMERSED BOUNDARY METHOD; LARGE-EDDY SIMULATIONS; RED-BLOOD-CELLS; POROUS-MEDIA; NUMERICAL SIMULATIONS; COMPRESSIBLE FLOWS; PARTICULATE SUSPENSIONS; NATURAL-CONVECTION;
D O I
10.1016/j.jcp.2020.109713
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This review summarizes the rigorous mathematical theory behind the lattice Boltzmann equation (LBE). Relevant properties of the Boltzmann equation and a derivation of the LBE from the Boltzmann equation are presented. A summary of some important LBE models is provided. Focus is given to results from the numerical analysis of the LBE as a solver for the nearly incompressible Navier-Stokes equations with appropriate boundary conditions. A number of numerical results are provided to demonstrate the efficacy of the lattice Boltzmann method. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:52
相关论文
共 50 条
  • [1] The lattice Boltzmann method for nearly incompressible flows
    Lallemand, Pierre
    Luo, Li-Shi
    Krafczyk, Manfred
    Yong, Wen-An
    [J]. Journal of Computational Physics, 2021, 431
  • [2] A spectral-element discontinuous Galerkin lattice Boltzmann method for nearly incompressible flows
    Min, Misun
    Lee, Taehun
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (01) : 245 - 259
  • [3] Finite Volume Lattice Boltzmann Method for Nearly Incompressible Flows on Arbitrary Unstructured Meshes
    Li, Weidong
    Luo, Li-Shi
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (02) : 301 - 324
  • [4] Application of lattice Boltzmann method for incompressible viscous flows
    Perumal, D. Arumuga
    Dass, Anoop K.
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) : 4075 - 4092
  • [5] Lattice Boltzmann interface capturing method for incompressible flows
    Zheng, HW
    Shu, C
    Chew, YT
    [J]. PHYSICAL REVIEW E, 2005, 72 (05):
  • [6] An improved gas kinetic BGK scheme for finite volume lattice Boltzmann method for nearly incompressible flows
    Wen, Mengke
    Wang, Yu
    Li, Weidong
    Zhao, Zhangyan
    [J]. COMPUTERS & FLUIDS, 2023, 255
  • [7] A gas-kinetic BGK scheme for the finite volume lattice Boltzmann method for nearly incompressible flows
    Li, Weidong
    Li, Wei
    [J]. COMPUTERS & FLUIDS, 2018, 162 : 126 - 138
  • [8] On the Modification of Lattice Boltzmann Method for the Modelling of Viscous Incompressible Flows
    Krivovichev, Gerasim
    [J]. 2014 INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGIES IN PHYSICAL AND ENGINEERING APPLICATIONS (ICCTPEA), 2014, : 81 - 82
  • [9] Lattice Boltzmann method for incompressible flows with large pressure gradients
    Shi, Y
    Zhao, TS
    Guo, ZL
    [J]. PHYSICAL REVIEW E, 2006, 73 (02):
  • [10] A conservation-moment-based implicit finite volume lattice Boltzmann method for steady nearly incompressible flows
    Li, Weidong
    Li, Wei
    Song, Pai
    Ji, Hao
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 398