On edge-disjoint spanning trees with small depths

被引:8
|
作者
Hasunuma, T [1 ]
机构
[1] Univ Electrocommun, Dept Comp Sci, Tokyo 1828585, Japan
关键词
edge-disjoint spanning trees; parallel processing; broadcasting; computational complexity; NP-hard;
D O I
10.1016/S0020-0190(00)00078-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G be a graph with n vertices. Suppose that there are k edge-disjoint spanning trees in G. We show that if the minimum degree of the vertices in G is at least kl, then there are k edge-disjoint spanning trees rooted at any vertex with depth O(n/l) in G. Also, we show that given a graph, a vertex r of the graph, and a positive integer k, the problem of finding k edge-disjoint spanning trees rooted at r with optimal depth is NP-hard. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:71 / 74
页数:4
相关论文
共 50 条
  • [1] Edge-disjoint spanning trees and eigenvalues
    Liu, Qinghai
    Hong, Yanmei
    Lai, Hong-Jian
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 444 : 146 - 151
  • [2] A property on edge-disjoint spanning trees
    Lai, HJ
    Lai, HY
    Payan, C
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (05) : 447 - 450
  • [3] On edge-disjoint spanning trees in hypercubes
    Barden, B
    Libeskind-Hadas, R
    Davis, J
    Williams, W
    [J]. INFORMATION PROCESSING LETTERS, 1999, 70 (01) : 13 - 16
  • [4] Edge-connectivity and edge-disjoint spanning trees
    Catlin, Paul A.
    Lai, Hong-Jian
    Shao, Yehong
    [J]. DISCRETE MATHEMATICS, 2009, 309 (05) : 1033 - 1040
  • [5] CONNECTIVITY AND EDGE-DISJOINT SPANNING-TREES
    GUSFIELD, D
    [J]. INFORMATION PROCESSING LETTERS, 1983, 16 (02) : 87 - 89
  • [6] Edge-disjoint spanning trees and eigenvalues of graphs
    Li, Guojun
    Shi, Lingsheng
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 2784 - 2789
  • [7] Note on edge-disjoint spanning trees and eigenvalues
    Liu, Qinghai
    Hong, Yanmei
    Gu, Xiaofeng
    Lai, Hong-Jian
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 : 128 - 133
  • [8] Spectral radius and edge-disjoint spanning trees
    Fan, Dandan
    Gu, Xiaofeng
    Lin, Huiqiu
    [J]. JOURNAL OF GRAPH THEORY, 2023, 104 (04) : 697 - 711
  • [9] Edge-disjoint spanning trees and forests of graphs
    Zhou, Jiang
    Bu, Changjiang
    Lai, Hong-Jian
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 299 : 74 - 81
  • [10] Constructing edge-disjoint spanning trees in twisted cubes
    Yang, Ming-Chien
    [J]. INFORMATION SCIENCES, 2010, 180 (20) : 4075 - 4083