Sensitivity of Numerical Weather Prediction to the Choice of Variable for Atmospheric Moisture Analysis into the Brazilian Global Model Data Assimilation System

被引:3
|
作者
Campos, Thamiris B. [1 ]
Sapucci, Luiz F. [1 ]
Lima, Wagner [2 ]
Ferreira, Douglas Silva [3 ]
机构
[1] Ctr Weather Forecasting & Climate Res, Natl Inst Space Res, BR-12227010 Cachoeira Paulista, SP, Brazil
[2] Climatempo, BR-12247016 Sao Jose Dos Campos, SP, Brazil
[3] Inst Tecnol Vale, BR-66055090 Belem, PA, Brazil
来源
ATMOSPHERE | 2018年 / 9卷 / 04期
关键词
atmospheric water vapor; numerical weather prediction; variational data assimilation; moisture control variable; pseudo-relative humidity; normalized relative humidity; WATER-VAPOR; CLIMATE;
D O I
10.3390/atmos9040123
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to the high spatial and temporal variability of atmospheric water vapor associated with the deficient methodologies used in its quantification and the imperfect physics parameterizations incorporated in the models, there are significant uncertainties in characterizing the moisture field. The process responsible for incorporating the information provided by observation into the numerical weather prediction is denominated data assimilation. The best result in atmospheric moisture depend on the correct choice of the moisture control variable. Normalized relative humidity and pseudo-relative humidity are the variables usually used by the main weather prediction centers. The objective of this study is to assess the sensibility of the Center for Weather Forecast and Climate Studies to choose moisture control variable in the data assimilation scheme. Experiments using these variables are carried out. The results show that the pseudo-relative humidity improves the variables that depend on temperature values but damage the moisture field. The opposite results show when the simulation used the normalized relative humidity. These experiments suggest that the pseudo-relative humidity should be used in the cyclical process of data assimilation and the normalized relative humidity should be used in non-cyclic process (e.g., nowcasting application in high resolution).
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Continuous data assimilation for global numerical weather prediction
    Lean, P.
    Holm, E. V.
    Bonavita, M.
    Bormann, N.
    McNally, A. P.
    Jarvinen, H.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2021, 147 (734) : 273 - 288
  • [2] Impact of SAPHIR Data Assimilation in the KIAPS Global Numerical Weather Prediction System
    Lee, Sihye
    Chun, Hyoung-Wook
    Song, Hyo-Jong
    [J]. ATMOSPHERE-KOREA, 2018, 28 (02): : 141 - 151
  • [3] Satellite data assimilation in global numerical weather prediction model using Kalman filter
    Bogoslovskiy, Nikolay N.
    Erin, Sergei I.
    Borodina, Irina A.
    Kizhner, Lubov I.
    Alipova, Kseniya A.
    [J]. 22ND INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS, 2016, 10035
  • [4] A global numerical weather prediction model with variable resolution
    Hardiker, V
    [J]. MONTHLY WEATHER REVIEW, 1997, 125 (01) : 59 - 73
  • [5] Assessing atmospheric predictability on Mars using numerical weather prediction and data assimilation
    Rogberg, P.
    Read, P. L.
    Lewis, S. R.
    Montabone, L.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (651) : 1614 - 1635
  • [6] Impact of satellite derived moisture in a global numerical weather prediction model
    Rajan, D
    Mitra, AK
    Rizvi, SRH
    Paliwal, RK
    Bohra, AK
    Bhatia, VB
    [J]. ATMOSFERA, 2001, 14 (04): : 203 - 209
  • [7] Overview of global data assimilation developments in numerical weather-prediction centres
    Rabier, Florence
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) : 3215 - 3233
  • [8] Large-scale data assimilation systems: Atmospheric applications to numerical weather prediction
    Pailleux, J
    [J]. JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 1997, 75 (1B) : 347 - 358
  • [9] Impact of Soil Moisture Data Assimilation on Analysis and Medium-Range Forecasts in an Operational Global Data Assimilation and Prediction System
    Jun, Sanghee
    Park, Jeong-Hyun
    Choi, Hyun-Joo
    Lee, Yong-Hee
    Lim, Yoon-Jin
    Boo, Kyung-On
    Kang, Hyun-Suk
    [J]. ATMOSPHERE, 2021, 12 (09)
  • [10] Recent developments in the data assimilation of AROME/HU numerical weather prediction model
    Toth, Helga
    Homonnai, Viktoria
    Mile, Mate
    Varkonyi, Aniko
    Kocsis, Zsofia
    Szanyi, Kristof
    Toth, Gabriella
    Szintai, Balazs
    Szepszo, Gabriella
    [J]. IDOJARAS, 2021, 125 (04): : 521 - 553