Bearing Fault Diagnosis Based on Domain Adaptation Using Transferable Features under Different Working Conditions

被引:42
|
作者
Tong, Zhe [1 ]
Li, Wei [1 ]
Zhang, Bo [2 ]
Zhang, Meng [1 ]
机构
[1] China Univ Min & Technol, Sch Mech Engn, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
SUPPORT VECTOR MACHINE; CLASSIFICATION;
D O I
10.1155/2018/6714520
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Bearing failure is the most common failure mode in rotating machinery and can result in large financial losses or even casualties. However, complex structures around bearing and actual variable working conditions can lead to large distribution difference of vibration signal between a training set and a test set, which causes the accuracy-dropping problem of fault diagnosis. Thus, how to improve efficiently the performance of bearing fault diagnosis under different working conditions is always a primary challenge. In this paper, a novel bearing fault diagnosis under different working conditions method is proposed based on domain adaptation using transferable features(DATF). The datasets of normal bearing and faulty bearings are obtained through the fast Fourier transformation (FFT) of raw vibration signals under different motor speeds and load conditions. Then we reduce marginal and conditional distributions simultaneously across domains based on maximum mean discrepancy (MMD) in feature space by refining pseudo test labels, which can be obtained by the nearest-neighbor (NN) classifier built on training data, and then a robust transferable feature representation for training and test domains is achieved after several iterations. With the help of the NN classifier trained on transferable features, bearing fault categories are identified accurately in final. Extensive experiment results show that the proposed method under different working conditions can identify the bearing faults accurately and outperforms obviously competitive approaches.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Domain Adaptation for Intelligent Fault Diagnosis under Different Working Conditions
    Li, Weigui
    Yuan, Zhuqing
    Sun, Wenyu
    Liu, Yongpan
    2020 8TH ASIA CONFERENCE ON MECHANICAL AND MATERIALS ENGINEERING (ACMME 2020), 2020, 319
  • [2] Bearing Fault Diagnosis Under Variable Working Conditions Based on Domain Adaptation Using Feature Transfer Learning
    Tong, Zhe
    Li, Wei
    Zhang, Bo
    Jiang, Fan
    Zhou, Gongbo
    IEEE ACCESS, 2018, 6 : 76187 - 76197
  • [3] A New Deep Convolutional Domain Adaptation Network for Bearing Fault Diagnosis under Different Working Conditions
    Zhang, Yongchao
    Ren, Zhaohui
    Zhou, Shihua
    SHOCK AND VIBRATION, 2020, 2020
  • [4] Bearing fault diagnosis under different operating conditions based on cross domain feature projection and domain adaptation
    Dong, Shuzhi
    Wen, Guangrui
    Zhang, Zhifen
    2019 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2019, : 1185 - 1190
  • [5] Bearing Fault Diagnosis Under Variable Working Conditions Base on Contrastive Domain Adaptation Method
    An, Yiyao
    Zhang, Ke
    Chai, Yi
    Liu, Qie
    Huang, Xinghua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [6] A Hybrid Adversarial Domain Adaptation Network for Bearing Fault Diagnosis Under Varying Working Conditions
    Zhang, Ziyun
    Peng, Lei
    Dai, Guangming
    Wang, Maocai
    Bai, Junfei
    Zhang, Lei
    Li, Jian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [7] Bearing fault diagnosis based on a domain adaptation model of convolutional neural network under multiple working conditions
    Qian S.
    Qin D.
    Chen J.
    Yuan F.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (24): : 192 - 200
  • [8] Rolling Bearing Fault Diagnosis Based on Domain Adaptation and Preferred Feature Selection under Variable Working Conditions
    Yu, Xiao
    Chen, Wei
    Wu, Chuanlong
    Ding, Enjie
    Tian, Yuanyuan
    Zuo, Haiwei
    Dong, Fei
    SHOCK AND VIBRATION, 2021, 2021
  • [9] A Multisource Domain Adaptation Network for Process Fault Diagnosis Under Different Working Conditions
    Li, Shijin
    Yu, Jianbo
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (06) : 6272 - 6283
  • [10] New domain adaptation method in shallow and deep layers of the CNN for bearing fault diagnosis under different working conditions
    Jin, Tongtong
    Yan, Chuliang
    Chen, Chuanhai
    Yang, Zhaojun
    Tian, Hailong
    Guo, Jinyan
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 124 (11-12): : 3701 - 3712