Machine learning to design antimicrobial combination therapies: Promises and pitfalls

被引:5
|
作者
Cantrell, Jennifer M. [1 ]
Chung, Carolina H. [1 ]
Chandrasekaran, Sriram [1 ,2 ,3 ,4 ]
机构
[1] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Med Sch, Rogel Canc Ctr, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Program Chem Biol, Ann Arbor, MI 48109 USA
[4] Ctr Bioinformat & Computat Med, Ann Arbor, MI 48109 USA
关键词
Antimicrobial resistance; Chemogenomics; Combination therapy; Drug discovery; Machine learning; PREDICTION; SYNERGY; MOXIFLOXACIN; FRAMEWORK; DRUGS; MODEL;
D O I
10.1016/j.drudis.2022.04.006
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Combination therapies can overcome antimicrobial resistance (AMR) and repurpose existing drugs. However, the large combinatorial space to explore presents a daunting challenge. In response, machine learning (ML) algorithms are being applied to identify novel synergistic drug interactions from millions of potential combinations. Here, we compare ML-based approaches for combination therapy design based on the type of input information used, specifically: drug properties, microbial response and infection microenvironment. We also provide a compilation of publicly available drug interaction datasets relevant to AMR. Finally, we discuss limitations of current ML-based methods and propose new strategies for designing efficacious combination therapies. These include consideration of in vivo conditions, design of sequential combinations, enhancement of model interpretability and application of deep learning algorithms.
引用
收藏
页码:1639 / 1651
页数:13
相关论文
共 50 条
  • [1] Applying Machine Learning to Facilitate Autism Diagnostics: Pitfalls and Promises
    Daniel Bone
    Matthew S. Goodwin
    Matthew P. Black
    Chi-Chun Lee
    Kartik Audhkhasi
    Shrikanth Narayanan
    [J]. Journal of Autism and Developmental Disorders, 2015, 45 : 1121 - 1136
  • [2] The Promises and Pitfalls of Machine Learning for Detecting Viruses in Aquatic Metagenomes
    Ponsero, Alise J.
    Hurwitz, Bonnie L.
    [J]. FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [3] Applying Machine Learning to Facilitate Autism Diagnostics: Pitfalls and Promises
    Bone, Daniel
    Goodwin, Matthew S.
    Black, Matthew P.
    Lee, Chi-Chun
    Audhkhasi, Kartik
    Narayanan, Shrikanth
    [J]. JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS, 2015, 45 (05) : 1121 - 1136
  • [4] Machine Learning and Prediction in Psychological Assessment Some Promises and Pitfalls
    Fokkema, Marjolein
    Iliescu, Dragos
    Greiff, Samuel
    Ziegler, Matthias
    [J]. EUROPEAN JOURNAL OF PSYCHOLOGICAL ASSESSMENT, 2022, 38 (03) : 165 - 175
  • [5] Distributed by Design: On the Promises and Pitfalls of Collaborative Learning with Multiple Representations
    White, Tobin
    Pea, Roy
    [J]. JOURNAL OF THE LEARNING SCIENCES, 2011, 20 (03) : 489 - 547
  • [6] Promises and pitfalls of beta cell–replacement therapies
    Jelena Kolic
    James D. Johnson
    [J]. Nature Metabolism, 2021, 3 : 1036 - 1037
  • [7] Personalized therapies in psychiatry: promises, pitfalls and perspectives
    Domschke, Katharina
    Muller, Daniel J.
    Serretti, Alessandro
    [J]. JOURNAL OF NEURAL TRANSMISSION, 2015, 122 (01) : 1 - 3
  • [8] The promises and pitfalls of epigenetic therapies in solid tumours
    Graham, Janet S.
    Kaye, Stanley B.
    Brown, Robert
    [J]. EUROPEAN JOURNAL OF CANCER, 2009, 45 (07) : 1129 - 1136
  • [9] Personalized therapies in psychiatry: promises, pitfalls and perspectives
    Katharina Domschke
    Daniel J. Müller
    Alessandro Serretti
    [J]. Journal of Neural Transmission, 2015, 122 : 1 - 3
  • [10] Machine learning approaches for drug combination therapies
    Paltun, Betul Guvenc
    Kaski, Samuel
    Mamitsuka, Hiroshi
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)