Data-driven model reduction for weakly nonlinear systems: A summary

被引:0
|
作者
Antoulas, A. C. [1 ,2 ]
Gosea, I. V. [2 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, POB 1892, Houston, TX 77251 USA
[2] Jacobs Univ Bremen, Sch Sci & Engn, D-28759 Bremen, Germany
来源
IFAC PAPERSONLINE | 2015年 / 48卷 / 01期
关键词
D O I
10.1016/j.ifacol.2015.05.123
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model reduction seeks to replace complex dynamical systems with simpler ones, having similar characteristics. One approach is data-driven reduction based on system data which are either measured or computed. In this regard the Loewner framework is a powerful tool for dealing with the reduction of both linear and nonlinear systems. (C) 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3 / +
页数:2
相关论文
共 50 条
  • [1] Data-Driven Model Reduction of Monotone Systems by Nonlinear DC Gains
    Kawano, Yu
    Besselink, Bart
    Scherpen, Jacquelien M. A.
    Cao, Ming
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (05) : 2094 - 2106
  • [2] Correction to: Fast data-driven model reduction for nonlinear dynamical systems
    Joar Axås
    Mattia Cenedese
    George Haller
    [J]. Nonlinear Dynamics, 2023, 111 (9) : 7959 - 7959
  • [3] Data-driven nonlinear model reduction to spectral submanifolds in mechanical systems
    Cenedese, M.
    Axas, J.
    Yang, H.
    Eriten, M.
    Haller, G.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2229):
  • [4] Data-driven model reduction by moment matching for linear and nonlinear systems
    Scarciotti, Giordano
    Astolfi, Alessandro
    [J]. AUTOMATICA, 2017, 79 : 340 - 351
  • [5] Data-driven method for dimension reduction of nonlinear randomly vibrating systems
    Junyin Li
    Yong Wang
    Xiaoling Jin
    Zhilong Huang
    Isaac Elishakoff
    [J]. Nonlinear Dynamics, 2021, 105 : 1297 - 1311
  • [6] Data-driven method for dimension reduction of nonlinear randomly vibrating systems
    Li, Junyin
    Wang, Yong
    Jin, Xiaoling
    Huang, Zhilong
    Elishakoff, Isaac
    [J]. NONLINEAR DYNAMICS, 2021, 105 (02) : 1297 - 1311
  • [7] Data-Driven Internal Model Learning Control for Nonlinear Systems
    Zhang, Huimin
    Chi, Ronghu
    Huang, Biao
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 11
  • [8] A data-driven approach to model calibration for nonlinear dynamical systems
    Greve, C. M.
    Hara, K.
    Martin, R. S.
    Eckhardt, D. Q.
    Koo, J. W.
    [J]. JOURNAL OF APPLIED PHYSICS, 2019, 125 (24)
  • [9] Control of MIMO nonlinear systems: A data-driven model inversion approach
    Novara, Carlo
    Milanese, Mario
    [J]. AUTOMATICA, 2019, 101 : 417 - 430
  • [10] A novel data-driven model based parameter estimation of nonlinear systems
    Ge, Xiaobiao
    Luo, Zhong
    Ma, Ying
    Liu, Haopeng
    Zhu, Yunpeng
    [J]. JOURNAL OF SOUND AND VIBRATION, 2019, 453 : 188 - 200