Joint Model Selection and Parameter Estimation by Population Monte Carlo Simulation

被引:18
|
作者
Hong, Mingyi [1 ]
Bugallo, Monica F. [2 ]
Djuric, Petar M. [2 ]
机构
[1] Univ Virginia, Dept Syst & Informat Engn, Charlottesville, VA 22903 USA
[2] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Bayesian methods; Markov Chain Monte Carlo (MCMC); model selection; Population Monte Carlo (PMC); POSTERIOR DISTRIBUTIONS; SINUSOIDS; MCMC;
D O I
10.1109/JSTSP.2010.2048385
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we study the problem of joint model selection and parameter estimation under the Bayesian framework. We propose to use the Population Monte Carlo (PMC) methodology in carrying out Bayesian computations. The PMC methodology has recently been proposed as an efficient sampling technique and an alternative to Markov Chain Monte Carlo (MCMC) sampling. Its flexibility in constructing transition kernels allows for joint sampling of parameter spaces that belong to different models. The proposed method is able to estimate the desired a posteriori distributions accurately. In comparison to the Reversible Jump MCMC (RJMCMC) algorithm, which is popular in solving the same problem, the PMC algorithm does not require burn-in period, it produces approximately uncorrelated samples, and it can be implemented in a parallel fashion. We demonstrate our approach on two examples: sinusoids in white Gaussian noise and direction of arrival (DOA) estimation in colored Gaussian noise, where in both cases the number of signals in the data is a priori unknown. Both simulations show the effectiveness of our proposed algorithm.
引用
收藏
页码:526 / 539
页数:14
相关论文
共 50 条
  • [1] Parameter estimation of a breaking wave slamming load model using Monte Carlo simulation
    Wang, Shaofeng
    Larsen, Torben Juul
    Gudmestad, Ove Tobias
    [J]. EERA DEEPWIND'2018, 15TH DEEP SEA OFFSHORE WIND R&D CONFERENCE, 2018, 1104
  • [2] On Tuning Parameter Selection in Model Selection and Model Averaging: A Monte Carlo Study
    Xiao, Hui
    Sun, Yiguo
    [J]. JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2019, 12 (03)
  • [3] Model Selection and Parameter Estimation for an Improved Approximate Bayesian Computation Sequential Monte Carlo Algorithm
    Deng, Yue
    Pei, Yongzhen
    Li, Changguo
    Zhu, Bin
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022
  • [4] A nonlinear population Monte Carlo scheme for Bayesian parameter estimation in a stochastic intercellular network model
    Miguez, Joaquin
    Marino, Ines P.
    [J]. 2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 497 - 500
  • [5] Quasi-Monte Carlo method in population genetics parameter estimation
    Chi, Hongmei
    Beerli, Peter
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 103 : 33 - 38
  • [6] Joint Bayesian model selection and parameter estimation of the generalized extreme value model with covariates using birth-death Markov chain Monte Carlo
    El Adlouni, Salaheddine
    Ouarda, Taha B. M. J.
    [J]. WATER RESOURCES RESEARCH, 2009, 45
  • [7] Sequential Monte Carlo for model selection and estimation of neural networks
    Andrieu, C
    deFreitas, N
    [J]. 2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 3410 - 3413
  • [8] Model selection for the binary latent class model: A Monte Carlo simulation
    Dias, Jose G.
    [J]. DATA SCIENCE AND CLASSIFICATION, 2006, : 91 - 99
  • [9] Stochastic model for optimal selection of DDG by Monte Carlo simulation
    Vaitheeswaran, N.
    Balasubramanian, R.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONIC, DRIVES AND ENERGY SYSTEMS, VOLS 1 AND 2, 2006, : 771 - +
  • [10] Parameter estimation by a Markov chain Monte Carlo technique for the Candy model
    Descombes, X
    van Lieshout, MNM
    Stoica, R
    Zerubia, J
    [J]. 2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 22 - 25