Generalized symmetry superalgebras

被引:1
|
作者
Acik, Ozgur [1 ]
Ertem, Umit [2 ]
机构
[1] Ankara Univ, Dept Phys, Fac Sci, TR-06100 Tandogan, Turkey
[2] Univ Mah, Diyanet Isleri, Dumlupinar Bul 147-H, TR-06800 Ankara, Turkey
关键词
TWISTOR; CURRENTS;
D O I
10.1063/5.0033936
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the symmetry superalgebras of isometries and geometric Killing spinors on a manifold to include all the hidden symmetries of the manifold generated by Killing spinors in all dimensions. We show that bilinears of geometric Killing spinors produce special Killing-Yano forms and special conformal Killing-Yano forms. After defining the Lie algebra structure of hidden symmetries generated by Killing spinors, we construct symmetry operators as the generalizations of the Lie derivative on spinor fields. All these constructions together constitute the structure of generalized symmetry superalgebras. We exemplify the construction on weak G(2) and nearly Kahler manifolds.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Conformal symmetry superalgebras
    de Medeiros, Paul
    Hollands, Stefan
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (17)
  • [2] MULTIDIMENSIONAL GENERALIZED SUPERALGEBRAS
    SEMENOV, VV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (09): : L511 - L514
  • [3] Generalized noncommutative superalgebras
    Abbaspur, R
    MODERN PHYSICS LETTERS A, 2003, 18 (08) : 587 - 599
  • [4] On superalgebras of matrices with symmetry properties
    Hill, S. L.
    Lettington, M. C.
    Schmidt, K. M.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (08): : 1538 - 1563
  • [5] Supergravity backgrounds and symmetry superalgebras
    Ertem, Umit
    TURKISH JOURNAL OF PHYSICS, 2016, 40 (02): : 113 - 126
  • [6] Quadratic Lie Superalgebras Generalized by Balinsky–Novikov Superalgebras
    Yi Tao
    Zhi Qi Chen
    Yan Wang
    Acta Mathematica Sinica, English Series, 2019, 35 : 213 - 226
  • [7] Quadratic Lie Superalgebras Generalized by Balinsky–Novikov Superalgebras
    Yi TAO
    Zhi Qi CHEN
    Yan WANG
    Acta Mathematica Sinica,English Series, 2019, (02) : 213 - 226
  • [8] Quadratic Lie Superalgebras Generalized by Balinsky–Novikov Superalgebras
    Yi TAO
    Zhi Qi CHEN
    Yan WANG
    Acta Mathematica Sinica, 2019, 35 (02) : 213 - 226
  • [9] Quadratic Lie Superalgebras Generalized by Balinsky-Novikov Superalgebras
    Tao, Yi
    Chen, Zhi Qi
    Wang, Yan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (02) : 213 - 226
  • [10] GENERALIZED DERIVATIONS OF LIE SUPERALGEBRAS
    Zhang, Runxuan
    Zhang, Yongzheng
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (10) : 3737 - 3751