A RIEMANNIAN BFGS METHOD WITHOUT DIFFERENTIATED RETRACTION FOR NONCONVEX OPTIMIZATION PROBLEMS

被引:38
|
作者
Huang, Wen [1 ]
Absil, R-A [2 ]
Gallivan, K. A. [3 ]
机构
[1] Rice Univ, Dept Computat & Appl Math, Houston, TX 77005 USA
[2] Catholic Univ Louvain, ICTEAM Inst, Dept Math Engn, B-1348 Louvain La Neuve, Belgium
[3] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
关键词
Riemannian optimization; manifold optimization; quasi-Newton methods; BFGS method; QUASI-NEWTON METHODS; UNCONSTRAINED OPTIMIZATION; GLOBAL CONVERGENCE; MINIMIZATION; MANIFOLDS;
D O I
10.1137/17M1127582
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a Riemannian BFGS method for minimizing a smooth function on a Riemannian manifold is de fined, based on a Riemannian generalization of a cautious update and a weak line search condition. It is proven that the Riemannian BFGS method converges (i) globally to stationary points without assuming the objective function to be convex and (ii) superlinearly to a nondegenerate minimizer. Using the weak line search condition removes the need for information from differentiated retraction. The joint matrix diagonalization problem is chosen to demonstrate the performance of the algorithms with various parameters, line search conditions, and pairs of retraction and vector transport. A preliminary version can be found in [Numerical Mathematics and Advanced Applications: ENUMATH 2015, Lect. Notes Comput. Sci. Eng. 112, Springer, New York, 2016, pp. 627-634].
引用
收藏
页码:470 / 495
页数:26
相关论文
共 50 条
  • [1] A Riemannian BFGS Method for Nonconvex Optimization Problems
    Huang, Wen
    Absil, P. -A.
    Gallivan, Kyle A.
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 627 - 634
  • [2] On the global convergence of the BFGS method or nonconvex unconstrained optimization problems
    Li, DH
    Fukushima, M
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2001, 11 (04) : 1054 - 1064
  • [3] An adaptive projection BFGS method for nonconvex unconstrained optimization problems
    Yuan, Gonglin
    Zhao, Xiong
    Liu, Kejun
    Chen, Xiaoxuan
    [J]. NUMERICAL ALGORITHMS, 2024, 95 (04) : 1747 - 1767
  • [4] An adaptive projection BFGS method for nonconvex unconstrained optimization problems
    Gonglin Yuan
    Xiong Zhao
    Kejun Liu
    Xiaoxuan Chen
    [J]. Numerical Algorithms, 2024, 95 : 1747 - 1767
  • [5] A hybrid Riemannian conjugate gradient method for nonconvex optimization problems
    Chunming Tang
    Xianglin Rong
    Jinbao Jian
    Shajie Xing
    [J]. Journal of Applied Mathematics and Computing, 2023, 69 : 823 - 852
  • [6] A hybrid Riemannian conjugate gradient method for nonconvex optimization problems
    Tang, Chunming
    Rong, Xianglin
    Jian, Jinbao
    Xing, Shajie
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 823 - 852
  • [7] Multiobjective BFGS method for optimization on Riemannian manifolds
    Najafi, Shahabeddin
    Hajarian, Masoud
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 87 (02) : 337 - 354
  • [8] Multiobjective BFGS method for optimization on Riemannian manifolds
    Shahabeddin Najafi
    Masoud Hajarian
    [J]. Computational Optimization and Applications, 2024, 87 (2) : 337 - 354
  • [9] A Nonmonotone Modified BFGS Algorithm for Nonconvex Unconstrained Optimization Problems
    Amini, Keyvan
    Bahrami, Somayeh
    Amiri, Shadi
    [J]. FILOMAT, 2016, 30 (05) : 1283 - 1296
  • [10] A globally convergent BFGS method for nonconvex minimization without line searches
    Zhang, L
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2005, 20 (06): : 737 - 747