Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction

被引:18
|
作者
Berghout, Tarek [1 ]
Benbouzid, Mohamed [2 ,3 ]
Mouss, Leila-Hayet [1 ]
机构
[1] Univ Batna 2, Lab Automat & Mfg Engn, Batna 05000, Algeria
[2] Univ Brest, Inst RechercheDupuy Lome UMR CNRS 6027, F-29238 Brest, France
[3] Shanghai Maritime Univ, Logist Engn Coll, Shanghai 201306, Peoples R China
关键词
bearings; prognosis; remaining useful life; data-driven; knowledge-driven; transfer learning; labels information; exploiting labels; denoising autoencoder; convolutional LSTM; WIND TURBINE BEARING; FAULT-DIAGNOSIS; NEURAL-NETWORKS; CLASSIFICATION; OPTIMIZATION; PROGNOSTICS; ALGORITHM; SELECTION;
D O I
10.3390/en14082163
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Since bearing deterioration patterns are difficult to collect from real, long lifetime scenarios, data-driven research has been directed towards recovering them by imposing accelerated life tests. Consequently, insufficiently recovered features due to rapid damage propagation seem more likely to lead to poorly generalized learning machines. Knowledge-driven learning comes as a solution by providing prior assumptions from transfer learning. Likewise, the absence of true labels was able to create inconsistency related problems between samples, and teacher-given label behaviors led to more ill-posed predictors. Therefore, in an attempt to overcome the incomplete, unlabeled data drawbacks, a new autoencoder has been designed as an additional source that could correlate inputs and labels by exploiting label information in a completely unsupervised learning scheme. Additionally, its stacked denoising version seems to more robustly be able to recover them for new unseen data. Due to the non-stationary and sequentially driven nature of samples, recovered representations have been fed into a transfer learning, convolutional, long-short-term memory neural network for further meaningful learning representations. The assessment procedures were benchmarked against recent methods under different training datasets. The obtained results led to more efficiency confirming the strength of the new learning path.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A probabilistic approach to remaining useful life prediction of rolling element bearings
    Prakash, Guru
    Narasimhan, Sriram
    Pandey, Mahesh D.
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2019, 18 (02): : 466 - 485
  • [2] Predicting the Remaining Useful Life of Rolling Element Bearings
    Jantunen, Erkki
    Hooghoudt, Jan-Otto
    Yang, Yi
    McKay, Mark
    2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2018, : 2035 - 2040
  • [3] Degradation Feature Selection for Remaining Useful Life Prediction of Rolling Element Bearings
    Zhang, Bin
    Zhang, Lijun
    Xu, Jinwu
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (02) : 547 - 554
  • [4] A Semi-Supervised Deep Transfer Learning Approach for Rolling-Element Bearing Remaining Useful Life Prediction
    Berghout, Tarek
    Mouss, Leila-Hayet
    Bentrcia, Toufik
    Benbouzid, Mohamed
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2022, 37 (02) : 1200 - 1210
  • [5] A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings
    Wang, Biao
    Lei, Yaguo
    Li, Naipeng
    Li, Ningbo
    IEEE TRANSACTIONS ON RELIABILITY, 2020, 69 (01) : 401 - 412
  • [6] A Remaining Useful Life Prediction Approach with Nonuniform Monitoring Conditions for Rolling Bearings
    Wang Y.
    Liu Q.
    Peng Y.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (23): : 96 - 104
  • [7] Prediction of remaining useful life of rolling element bearings based on LSTM and exponential model
    Liu, Jingna
    Hao, Rujiang
    Liu, Qiang
    Guo, Wenwu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (04) : 1567 - 1578
  • [8] Prediction of remaining useful life of rolling element bearings based on LSTM and exponential model
    Jingna Liu
    Rujiang Hao
    Qiang Liu
    Wenwu Guo
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 1567 - 1578
  • [9] Just Another Attention Network for Remaining Useful Life Prediction of Rolling Element Bearings
    Huang, Gangjin
    Hua, Shungang
    Zhou, Qiang
    Li, Hongkun
    Zhang, Yuanliang
    IEEE ACCESS, 2020, 8 : 204144 - 204152
  • [10] Remaining Useful Life Prediction of Rolling Element Bearings Based on Unscented Kalman Filter
    Qi, Junyu
    Mauricio, Alexadre
    Sarrazin, Mathieu
    Janssens, Karl
    Gryllias, Konstantinos
    ADVANCES IN CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO 2018), 2019, 15 : 111 - 121