Multivariate Outlier Detection in Postprocessing of Multi-temporal PS-InSAR Results using Deep Learning

被引:1
|
作者
Aguiar, Pedro [1 ]
Cunha, Antonio [1 ,2 ]
Bakon, Matus [3 ,4 ]
Ruiz-Armenteros, Antonio M. [5 ,6 ,7 ]
Sousa, Joaquim J. [1 ,2 ]
机构
[1] Univ Tras Os Montes & Alto Douro, Vila Real, Portugal
[2] INESC TEC, INESC Porto, Porto, Portugal
[3] Insar Sk Ltd, Presov, Slovakia
[4] Univ Presov, Presov, Slovakia
[5] Univ Jaen, Jaen, Spain
[6] Univ Jaen, Grp Invest Microgeodesia Jaen, Jaen, Spain
[7] Univ Jaen, Ctr Estudios Avanzados Ciencias Tierra CEACTierra, Jaen, Spain
关键词
InSAR; Deep Learning; deformation; outlier detection; PERMANENT SCATTERERS; SAR;
D O I
10.1016/j.procs.2021.01.326
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-temporal InSAR (MT-InSAR) techniques proved to be very effective for deformation monitoring. However, decorrelation and other noise sources, can be limiting factors in MT-InSAR. The obtained observations (PS - Persistent scatterers) are usually very demanding from a computational perspective, as they can reach hundreds of thousands of observations. To simplify and speed up the classification process, in this study we present an approach based on Convolutional Neural Networks (CNN) classification models, for the detection of MT-InSAR outlying observations. For each PS, the corresponding MT-InSAR parameters, its neighbouring scatterers parameters and its relative position are considered. Tests in two independent PS datasets, covering the regions of Bratislava city and the suburbs of Prievidza, Slovakia, were performed. The results showed that such models are robust and reduced computation time method for the evaluation of MT-InSAR outlying observations. However, the applicability of these models is limited by the deformation pattern in which such models were trained. (C) 2021 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1146 / 1153
页数:8
相关论文
共 50 条
  • [1] PS-INSAR TARGET CLASSIFICATION USING DEEP LEARNING
    Aguiar, Pedro
    Cunha, Antonio
    Bakon, Matus
    Ruiz-Armenteros, Antonio M.
    Sousa, Joaquim J.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2931 - 2934
  • [2] A Data Mining Approach for Multivariate Outlier Detection in Postprocessing of Multitemporal InSAR Results
    Bakon, Matus
    Oliveira, Irene
    Perissin, Daniele
    Sousa, Joaquim Joao
    Papco, Juraj
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (06) : 2791 - 2798
  • [3] ROAD SURFACE DEFORMATION ASSESSMENT OF CHENGDU, CHINA USING PS-INSAR TECHNIQUE AND SENTINEL-1 MULTI-TEMPORAL SAR DATASETS
    Zhu, Bao
    Wang, Yong
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2006 - 2009
  • [4] A DATA MINING APPROACH FOR MULTIVARIATE OUTLIER DETECTION IN HETEROGENEOUS 2D POINT CLOUDS: AN APPLICATION TO POST-PROCESSING OF MULTI-TEMPORAL INSAR RESULTS
    Bakon, M.
    Oliveira, I.
    Perissin, D.
    Sousa, J.
    Papco, J.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 56 - 59
  • [5] Ground instability detection using PS-InSAR in Lanzhou, China
    Zeng, R. Q.
    Meng, X. M.
    Wasowski, J.
    Dijkstra, T.
    Bovenga, F.
    Xue, Y. T.
    Wang, S. Y.
    QUARTERLY JOURNAL OF ENGINEERING GEOLOGY AND HYDROGEOLOGY, 2014, 47 (04) : 307 - 321
  • [6] Spatiotemporal modeling of land subsidence using a geographically weighted deep learning method based on PS-InSAR
    Li, Huijun
    Zhu, Lin
    Dai, Zhenxue
    Gong, Huili
    Guo, Tao
    Guo, Gaoxuan
    Wang, Jingbo
    Teatini, Pietro
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 799
  • [7] Landslide detection in Kinnaur Valley, NW India using PS-InSAR technique
    Joshi, Moulishree
    Kothyari, Girish Ch.
    Kotlia, B. S.
    PHYSICAL GEOGRAPHY, 2024, 45 (02) : 160 - 174
  • [8] Detection of Soil Liquefaction Areas in the Kantou Region using Multi-temporal InSAR Coherence
    Tamura, Masayuki
    Li, Weiping
    CONFERENCE PROCEEDINGS OF 2013 ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2013, : 548 - 551
  • [9] MEASUREMENT OF VERTICAL DEFORMATION IN KARACHI USING MULTI-TEMPORAL INSAR
    Kanwal, Shamsa
    Ding, Xiaoli
    Zhang, Lei
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1395 - 1398
  • [10] Dynamic online visualization of PS-InSAR surface motion estimation results using WebGL
    Liang, Dong
    Balz, Timo
    Wang, Ziyun
    Wei, Lianhuan
    Liao, Mingsheng
    REMOTE SENSING LETTERS, 2017, 8 (02) : 126 - 135