Robust full-waveform inversion with Radon-domain matching filter

被引:21
|
作者
Sun, Bingbing [1 ]
Alkhalifah, Tariq [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Phys Sci & Engn, Thuwal, Saudi Arabia
关键词
PLANE-WAVE; OPTIMAL TRANSPORT; SEISMIC DATA; FREQUENCY-DOMAIN; REFLECTION DATA; TRANSFORM; SEISMOGRAMS; EQUATION; MISFIT; TIME;
D O I
10.1190/GEO2018-0347.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Cycle skipping is a severe issue in full-waveform inversion. One option to overcome it is to extend the search space to allow for data comparisons beyond the "point-to-point" subtraction. A matching filter can be computed by deconvolving the measured data from the predicted ones. If the model is correct, the resulting matching filter would be a Dirac delta function in which the energy is focused at zero lag. An optimization problem can be formulated by penalizing this matching filter departure from a Dirac delta function. Because the matching filter replaces the local sample-by-sample comparison with a global one using deconvolution, it can reduce the cycle-skipping problem. Because the matching filter is computed using the whole trace of the measured and predicted data, it is prone to unwanted crosstalk of different events. We perform the deconvolution in the Radon domain to reduce crosstalk and improve the inversion. We first transform the measured and the predicted data into the tau-p domain using the local Radon transform. We then perform deconvolution for the trace indexed by the same slope value. The main objective of the proposal is to use the slope information embedded in the Radon-transform representation to separate the events and reduce the crosstalk in the deconvolution step. As a result, the objective function tends to be more convex and stabilizes the inversion process. The result obtained for the modified Marmousi model demonstrates the proposed Radon-domain matching-filter approach can converge to a meaningful model given data without the low frequencies of less than 3 Hz and a v(z) initial model. Compared to the conventional time-space matching-filter approach, the Radon-domain approach indicates fewer artifacts in the model and better fitting of the measured data. The result corresponding to the Chevron 2014 benchmark data set also indicates the good performance of the proposed approach.
引用
收藏
页码:R707 / R724
页数:18
相关论文
共 50 条
  • [1] Joint Minimization of the Mean and Information Entropy of the Matching Filter Distribution for a Robust Misfit Function in Full-Waveform Inversion
    Sun, Bingbing
    Alkhalifah, Tariq A.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4704 - 4720
  • [2] Robust source-independent elastic full-waveform inversion in the time domain
    Zhang, Qingchen
    Zhou, Hui
    Li, Qingqing
    Chen, Hanming
    Wang, Jie
    GEOPHYSICS, 2016, 81 (02) : R29 - R44
  • [3] Extended full waveform inversion with matching filter
    Li, Yuanyuan
    Alkhalifah, Tariq
    GEOPHYSICAL PROSPECTING, 2021, 69 (07) : 1441 - 1454
  • [4] Evolutionary full-waveform inversion
    van Herwaarden, Dirk Philip
    Afanasiev, Michael
    Thrastarson, Solvi
    Fichtner, Andreas
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 224 (01) : 306 - 311
  • [5] Variational full-waveform inversion
    Zhang, Xin
    Curtis, Andrew
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 222 (01) : 406 - 411
  • [6] Interferometric full-waveform inversion
    Sinha, Mrinal
    Schuster, Gerard T.
    GEOPHYSICS, 2019, 84 (01) : R45 - R60
  • [7] Robust full-waveform inversion using q-statistics
    Eduardo Ferreira da Silva, Sergio Luiz
    da Costa, Carlos A. N.
    Carvalho, Pedro Tiago C.
    de Araujo, Joao Medeiros
    Lucena, Liacir dos Santos
    Corso, Gilberto
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 548
  • [8] Variational full-waveform inversion
    Zhang X.
    Curtis A.
    Geophysical Journal International, 2021, 222 (01): : 406 - 411
  • [9] Frequency-domain Full-waveform Inversion of GPR Data
    Yang, X.
    van der Kruk, J.
    Bikowski, J.
    Kumbhar, P.
    Meles, G. A.
    Vereecken, H.
    NEAR-SURFACE GEOPHYSICS AND ENVIRONMENT PROTECTION, 2012, : 344 - 348
  • [10] Semiglobal viscoacoustic full-waveform inversion
    da Silva, Nuno V.
    Yao, Gang
    Warner, Michael
    GEOPHYSICS, 2019, 84 (02) : R271 - R293