An energy minimisation approach to stereo-temporal dense reconstruction

被引:18
|
作者
Leung, C [1 ]
Appleton, B [1 ]
Lovell, BC [1 ]
Sun, CM [1 ]
机构
[1] Univ Queensland, IRIS Grp, ITEE, St Lucia, Qld 4067, Australia
关键词
D O I
10.1109/ICPR.2004.1333708
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel energy minimisation framework for the dense reconstruction of stereo image sequences that incorporates data fidelity as well as spatial and temporal regularity. An iterated dynamic programming scheme is proposed to minimise the energy function. We also present an efficient implementation of the minimisation scheme by introducing morphological decomposition techniques to solve the dynamic programming subproblem. Our proposed method is capable of reconstructing dynamic scenes with complex motion. Results are presented demonstrating the strength of our proposed algorithm.
引用
收藏
页码:72 / 75
页数:4
相关论文
共 50 条
  • [1] Multiresolution energy minimisation framework for stereo matching
    Arranz, A.
    Sanchez, A.
    Alvar, M.
    IET COMPUTER VISION, 2012, 6 (05) : 425 - 434
  • [2] A LOCAL ADAPTIVE APPROACH FOR DENSE STEREO MATCHING IN ARCHITECTURAL SCENE RECONSTRUCTION
    Stentoumis, C.
    Grammatikopoulos, L.
    Kalisperakis, I.
    Petsa, E.
    Karras, G.
    3D-ARCH 2013 - 3D VIRTUAL RECONSTRUCTION AND VISUALIZATION OF COMPLEX ARCHITECTURES, 2013, 40-5-W1 : 219 - 226
  • [3] A layered approach to stereo reconstruction
    Baker, S
    Szeliski, R
    Anandan, P
    1998 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1998, : 434 - 441
  • [4] A new dense omnidirectional stereo matching approach
    Kerkaou, Zakaria
    Alioua, Nawal
    El Ansari, Mohamed
    Masmoudi, Lhoussaine
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV2018), 2018,
  • [5] An artificial life approach to dense stereo disparity
    Olague, Gustavo
    Perez, Cynthia B.
    Fernandez, Francisco
    Lutton, Evelyne
    ARTIFICIAL LIFE AND ROBOTICS, 2009, 13 (02) : 585 - 596
  • [6] Field phenotyping of grapevine growth using dense stereo reconstruction
    Klodt, Maria
    Herzog, Katja
    Toepfer, Reinhard
    Cremers, Daniel
    BMC BIOINFORMATICS, 2015, 16
  • [7] Joint Optimization for Object Class Segmentation and Dense Stereo Reconstruction
    Lubor Ladický
    Paul Sturgess
    Chris Russell
    Sunando Sengupta
    Yalin Bastanlar
    William Clocksin
    Philip H. S. Torr
    International Journal of Computer Vision, 2012, 100 : 122 - 133
  • [8] Obstacle detection for mobile robots, using dense stereo reconstruction
    Pocol, Ciprian
    Nedevschi, Sergiu
    Obojski, Marian Andrzej
    ICCP 2007: IEEE 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING, PROCEEDINGS, 2007, : 127 - +
  • [9] Field phenotyping of grapevine growth using dense stereo reconstruction
    Maria Klodt
    Katja Herzog
    Reinhard Töpfer
    Daniel Cremers
    BMC Bioinformatics, 16
  • [10] Joint Optimization for Object Class Segmentation and Dense Stereo Reconstruction
    Ladicky, Lubor
    Sturgess, Paul
    Russell, Chris
    Sengupta, Sunando
    Bastanlar, Yalin
    Clocksin, William
    Torr, Philip H. S.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2012, 100 (02) : 122 - 133