PET parametric imaging based on MR frequency-domain texture information

被引:1
|
作者
Mao, Xin [1 ,2 ]
Zhao, Shujun [1 ]
Meng, Xiangxi [3 ]
Jin, Yuxi [2 ]
Kong, Hanjing [4 ]
Yuan, Jianmin [5 ]
He, Qiang [5 ]
Liang, Dong [2 ]
Yu, Jiangyuan [3 ]
Hu, Zhanli [2 ]
机构
[1] Zhengzhou Univ, Sch Phys & Microelect, Zhengzhou 450001, Peoples R China
[2] Chinese Acad Sci, Lauterbur Res Ctr Biomed Imaging, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[3] Peking Univ, Key Lab Res & Evaluat Radiopharmaceut, Key Lab Carcinogenesis & Translat Res,Canc Hosp &, Natl Med Prod Adm,Minist Educ Beijing,Dept Nucl M, Beijing 100142, Peoples R China
[4] Beijing United Imaging Res Inst Intelligent Imagi, Beijing 100094, Peoples R China
[5] United Imaging Healthcare Grp, Cent Res Inst, Shanghai 201807, Peoples R China
关键词
Parametric imaging; PET; MR; Spatiotemporal; Gabor texture; RECONSTRUCTION; FEATURES;
D O I
10.1016/j.nima.2022.166411
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An integrated positron emission tomography (PET)/magnetic resonance (MR) system combines the unique advantages of the two separate systems to achieve dual modality imaging in the same spatiotemporal region. With this advantage, PET parametric imaging guided by coregistered MRI can effectively improve the spatial resolution of an image. The existing guided imaging methods generally use only the neighborhood intensity information of MR and ignore the texture features in images, but these features can be used as a priori information. Therefore, we propose a novel method of MR-guided kernel reconstruction in this paper. First, a new kernel matrix is constructed by using Gabor texture and voxel intensity information from MR, including diverse image information in the frequency and spatial domains. Then, a new kernel matrix is applied for iterative parametric imaging to obtain improved images. Simulation experiments with PET/MR digital phantom and clinical patient images demonstrate that the additional a priori texture features extracted from the images can further improve the quality of parametric imaging. Compared with the maximum likelihood expectation maximum (MLEM) algorithm and the original kernel algorithm, the proposed method effectively improves tumor recovery and noise reduction in parametric imaging.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Frequency-domain simulation of MR tagging
    Crum, WR
    Berry, E
    Ridgway, JP
    Sivananthan, UM
    Tan, LB
    Smith, MA
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 1998, 8 (05) : 1040 - 1050
  • [2] Frequency-Domain Transient Imaging
    Lin, Jingyu
    Liu, Yebin
    Suo, Jinli
    Dai, Qionghai
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (05) : 937 - 950
  • [3] Parametric study of the frequency-domain thermoreflectance technique
    Xing, C.
    Jensen, C.
    Hua, Z.
    Ban, H.
    Hurley, D. H.
    Khafizov, M.
    Kennedy, J. R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 112 (10)
  • [4] Parametric Simulation of PEEC Circuits in the Frequency-Domain
    Lombardi, L.
    Tao, Y.
    Nakhla, M.
    Ferranti, F.
    Antonini, G.
    Nouri, B.
    [J]. 2018 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO), 2018,
  • [5] Frequency-domain blind deconvolution based on mutual information rate
    Larue, A
    Mars, JI
    Jutten, C
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (05) : 1771 - 1781
  • [6] Geotomographical imaging in electromagnetic frequency-domain
    Pralat, A
    Zdunek, R
    [J]. MODERN PROBLEMS OF RADIO ENGINEERING, TELECOMMUNICATIONS AND COMPUTER SCIENCE, PROCEEDINGS, 2002, : 229 - 232
  • [7] Frequency-domain diagonal extension imaging
    Shan Jiang
    Meiling Guan
    Jiamin Wu
    Guocheng Fang
    Xinzhu Xu
    Dayong Jin
    Zhen Liu
    Kebin Shi
    Fan Bai
    Shu Wang
    Peng Xi
    [J]. Advanced Photonics . , 2020, (03) - 71
  • [8] Frequency-domain photoacoustic imaging system
    [J]. 1600, Chinese Society of Astronautics (45):
  • [9] Frequency-domain diagonal extension imaging
    Shan Jiang
    Meiling Guan
    Jiamin Wu
    Guocheng Fang
    Xinzhu Xu
    Dayong Jin
    Zhen Liu
    Kebin Shi
    Fan Bai
    Shu Wang
    Peng Xi
    [J]. Advanced Photonics, 2020, 2 (03) : 64 - 71
  • [10] Frequency-domain diagonal extension imaging
    Jiang, Shan
    Guan, Meiling
    Wu, Jiamin
    Fang, Guocheng
    Xu, Xinzhu
    Jin, Dayong
    Liu, Zhen
    Shi, Kebin
    Bai, Fan
    Wang, Shu
    Xi, Peng
    [J]. ADVANCED PHOTONICS, 2020, 2 (03):