Estimation-based norm-optimal iterative learning control

被引:15
|
作者
Axelsson, Patrik [1 ]
Karlsson, Rickard [1 ,2 ]
Norrlof, Mikael [1 ,3 ]
机构
[1] Linkoping Univ, Dept Elect Engn, Div Automat Control, SE-58183 Linkoping, Sweden
[2] Nira Dynam, SE-58330 Linkoping, Sweden
[3] ABB AB Robot, SE-72168 Vasteras, Sweden
关键词
Iterative learning control; Estimation; Filtering; Non-linear systems; CONVERGENCE; SYSTEMS; DOMAIN; TIME;
D O I
10.1016/j.sysconle.2014.08.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The norm-optimal iterative learning control (ILC) algorithm for linear systems is extended to an estimation-based norm-optimal ILC algorithm where the controlled variables are not directly available as measurements. A separation lemma is presented, stating that if a stationary Kalman filter is used for linear time-invariant systems then the ILC design is independent of the dynamics in the Kalman filter. Furthermore, the objective function in the optimisation problem is modified to incorporate the full probability density function of the error. Utilising the Kullback-Leibler divergence leads to an automatic and intuitive way of tuning the ILC algorithm. Finally, the concept is extended to non-linear state space models using linearisation techniques, where it is assumed that the full state vector is estimated and used in the ILC algorithm. Stability and convergence properties for the proposed scheme are also derived. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 80
页数:5
相关论文
共 50 条
  • [1] Library-Based Norm-Optimal Iterative Learning Control
    Reed, James
    Wu, Maxwell
    Barton, Kira
    Vermillion, Chris
    Mishra, Kirti D.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 5851 - 5857
  • [2] Accelerated predictive norm-optimal iterative learning control
    Chu, B.
    Owens, D. H.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2011, 225 (I6) : 744 - 759
  • [3] A Q, L Factorization of Norm-Optimal Iterative Learning Control
    Bristow, Douglas A.
    Hencey, Brandon
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 2380 - 2384
  • [4] Fast Norm-Optimal Iterative Learning Control for industrial applications
    Ratcliffe, J
    van Duinkerken, L
    Lewin, P
    Rogers, E
    Hätönen, J
    Harte, T
    Owens, D
    ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 1951 - 1956
  • [5] Quality Control in Injection Molding based on Norm-optimal Iterative Learning Cavity Pressure Control
    Stemmler, Sebastian
    Vukovic, Marko
    Ay, Muzaffer
    Heinisch, Julian
    Lockner, Yannik
    Abel, Dirk
    Hopmann, Christian
    IFAC PAPERSONLINE, 2020, 53 (02): : 10380 - 10387
  • [6] Basis functions and Genetic Algorithms in norm-optimal Iterative Learning Control
    Hatzikos, V
    Hätönen, J
    Owens, DH
    INTELLIGENT CONTROL SYSTEMS AND SIGNAL PROCESSING 2003, 2003, : 285 - 290
  • [7] Norm-optimal iterative learning control in an integer-valued control domain
    Arnold, Florian
    King, Rudibert
    INTERNATIONAL JOURNAL OF CONTROL, 2023, 96 (01) : 170 - 181
  • [8] Norm-optimal iterative learning control applied to gantry robots for automation applications
    Ratcliffe, James D.
    Lewin, Paul L.
    Rogers, Eric
    Hatonen, Jari J.
    Owens, David H.
    IEEE TRANSACTIONS ON ROBOTICS, 2006, 22 (06) : 1303 - 1307
  • [9] Accelerated norm-optimal iterative learning control algorithms using successive projection
    Bing Chu
    Owens, David H.
    INTERNATIONAL JOURNAL OF CONTROL, 2009, 82 (08) : 1469 - 1484
  • [10] Economic Norm-Optimal Iterative Learning Control of a Left Ventricular Assist Device
    Ketelhut, Maike
    Hellmold, Lisa
    Habigt, Moriz
    Hein, Marc
    Abel, Dirk
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 3790 - 3796