Adaptive recurrent fuzzy neural network control for linearized multivariable systems

被引:0
|
作者
Lin, CM [1 ]
Chen, CH [1 ]
Chin, WL [1 ]
机构
[1] Yuan Ze Univ, Dept Elect Engn, Taoyuan 320, Taiwan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper develops a design method of recurrent fuzzy neural network (RFNN) control system for multi-input multi-output (MIMO) dynamic systems. This control system consist a feedback controller and a RFNN controller. The feedback controller reveals basic stabilizing controller to stabilize the system and the RFNN controller presents a robust controller to deal with unknown part of system dynamics. The adaptive laws of RFNN are derived based on the Lyapunov stability function so that the stability of the system can be guaranteed. Finally, the proposed control system is applied to an F-16 flight control system. Simulation results demonstrate that the developed control system can achieve favorable robust control performances even with some failures of the flight control system.
引用
收藏
页码:709 / 714
页数:6
相关论文
共 50 条
  • [1] Recurrent fuzzy neural network adaptive hybrid control for linearized multivariable systems
    Lin, C. M.
    Chen, C. H.
    Lee, Y. F.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2006, 17 (05) : 479 - 491
  • [2] Adaptive control using recurrent fuzzy neural network
    Mao, Liu-Ping
    Wang, Yao-Nan
    Sun, Wei
    Dai, Yu-Xing
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2006, 34 (12): : 2285 - 2287
  • [3] Multivariable adaptive control of nonlinear unknown dynamic systems using recurrent neural-network
    Hwang, Chih-Lyang
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 5006 - 5011
  • [4] Multivariable adaptive control using an observer based on a recurrent neural network
    Ctro. Info. Sist. Univ. de Coimbra, Depto. de Engenharia Info., Polo II, UC - 3030 Coimbra, Portugal
    [J]. Int J Adapt Control Signal Process, 4 (241-259):
  • [5] Multivariable adaptive control using an observer based on a recurrent neural network
    Henriques, J
    Dourado, A
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 1999, 13 (04) : 241 - 259
  • [6] Fuzzy adaptive control of multivariable nonlinear systems
    Tong, SC
    Tang, JT
    Wang, T
    [J]. FUZZY SETS AND SYSTEMS, 2000, 111 (02) : 153 - 167
  • [7] Fuzzy adaptive control of multivariable nonlinear systems
    Goléa, N
    Goléa, A
    [J]. PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 330 - 334
  • [8] RECURRENT FUZZY NEURAL NETWORK CONTROL FOR MIMO NONLINEAR SYSTEMS
    Mon, Yi-Jen
    Lin, Chih-Min
    Leng, Chin-Hsu
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2008, 14 (04): : 395 - 415
  • [9] Adaptive Predictive Control With Recurrent Fuzzy Neural Network for Industrial Processes
    Mendes, Jerome
    Sousa, Nuno
    Araujo, Rui
    [J]. 2011 IEEE 16TH CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2011,
  • [10] Adaptive fuzzy control for a class of multivariable nonlinear systems
    Liu, Yan-Jun
    Wang, Wei
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2007, 33 (11): : 1163 - 1169