Initialization of cluster refinement algorithms: A review and comparative study

被引:31
|
作者
He, J [1 ]
Lan, M [1 ]
Tan, CL [1 ]
Sung, SY [1 ]
Low, HB [1 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore 117543, Singapore
关键词
D O I
10.1109/IJCNN.2004.1379917
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Various iterative refinement clustering methods are dependent on the initial state of the model and are capable of obtaining one of their local optima only. Since the task of identifying the global optimization is NP-hard, the study of the initialization method towards a sub-optimization is of great value. This paper reviews the various cluster initialization methods in the literature by categorizing them into three major families, namely random sampling methods, distance optimization methods, and density estimation methods. In addition, using a set of quantitative measures, we assess their performance on a number of synthetic and real-life data sets. Our controlled benchmark identifies two distance optimization methods, namely SCS and KKZ, as complements of the K-Means learning characteristics towards a better cluster separation in the output solution.
引用
收藏
页码:297 / 302
页数:6
相关论文
共 50 条
  • [1] A Review of the Most Common Partition Algorithms in Cluster Analysis: A Comparative Study
    Leiva-Valdebenito, Susana A.
    Torres-Aviles, Francisco J.
    [J]. REVISTA COLOMBIANA DE ESTADISTICA, 2010, 33 (02): : 321 - 339
  • [2] Efficient Initialization Methods for Population-Based Metaheuristic Algorithms: A Comparative Study
    Agushaka, Jeffrey O. O.
    Ezugwu, Absalom E. E.
    Abualigah, Laith
    Alharbi, Samaher Khalaf
    Khalifa, Hamiden Abd El-Wahed
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (03) : 1727 - 1787
  • [3] Efficient Initialization Methods for Population-Based Metaheuristic Algorithms: A Comparative Study
    Jeffrey O. Agushaka
    Absalom E. Ezugwu
    Laith Abualigah
    Samaher Khalaf Alharbi
    Hamiden Abd El-Wahed Khalifa
    [J]. Archives of Computational Methods in Engineering, 2023, 30 : 1727 - 1787
  • [4] A Review of Population Initialization Techniques for Evolutionary Algorithms
    Kazimipour, Borhan
    Li, Xiaodong
    Qin, A. K.
    [J]. 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 2585 - 2592
  • [5] A Review on the CPU Scheduling Algorithms: Comparative Study
    Ali, Shahad M.
    Alshahrani, Razan F.
    Hadadi, Amjad H.
    Alghamdi, Tahany A.
    Almuhsin, Fatimah H.
    El-Sharawy, Enas E.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (01): : 19 - 26
  • [6] A comparative study on the contour tracking algorithms in ultrasound tongue images with automatic re-initialization
    Xu, Kele
    Csapo, Tamas Gabor
    Roussel, Pierre
    Denby, Bruce
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2016, 139 (05): : EL154 - EL160
  • [7] Comparative Study of Various Cluster Formation Algorithms in Wireless Sensor Networks
    Siew, Zhan Wei
    Chin, Yit Kwong
    Kiring, Aroland
    Yoong, Hou Pin
    Teo, Kenneth Tze Kin
    [J]. 2012 7TH INTERNATIONAL CONFERENCE ON COMPUTING AND CONVERGENCE TECHNOLOGY (ICCCT2012), 2012, : 772 - 777
  • [8] Matrix and tensor completion algorithms for background model initialization: A comparative evaluation
    Sobral, Andrews
    Zahzah, El-hadi
    [J]. PATTERN RECOGNITION LETTERS, 2017, 96 : 22 - 33
  • [9] Comparative Review of MPPT Algorithms
    Silva, Martiane de Oliveira
    Calili, Rodrigo Flora
    Louzada, Daniel Ramos
    [J]. 2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, : 1140 - 1147
  • [10] Maximin initialization for cluster analysis
    Hathaway, Richard J.
    Bezdek, James C.
    Huband, Jacalyn M.
    [J]. PROGRESS IN PATTERN RECOGNITON, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2006, 4225 : 14 - 26