Dynamical first-order phase transition in kinetically constrained models of glasses

被引:319
|
作者
Garrahan, J. P. [1 ]
Jack, R. L.
Lecomte, V.
Pitard, E.
van Duijvendijk, K.
van Wijland, F.
机构
[1] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Paris 07, Lab Mat & Syst Complexes, CNRS, UMR 7057, F-75205 Paris, France
[4] Univ Montpellier 2, Lab Colloides Verres & Nanomat, CNRS, UMR 5587, F-34095 Montpellier 5, France
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevLett.98.195702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the dynamics of kinetically constrained models of glass formers takes place at a first-order coexistence line between active and inactive dynamical phases. We prove this by computing the large-deviation functions of suitable space-time observables, such as the number of configuration changes in a trajectory. We present analytic results for dynamic facilitated models in a mean-field approximation, and numerical results for the Fredrickson-Andersen model, the East model, and constrained lattice gases, in various dimensions. This dynamical first-order transition is generic in kinetically constrained models, and we expect it to be present in systems with fully jammed states.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories
    Garrahan, Juan P.
    Jack, Robert L.
    Lecomte, Vivien
    Pitard, Estelle
    van Duijvendijk, Kristina
    van Wijland, Frederic
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (07)
  • [2] On the relation between kinetically constrained models of glass dynamics and the random first-order transition theory
    Foini, Laura
    Krzakala, Florent
    Zamponi, Francesco
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
  • [3] Dynamical scheme for hadronization with first-order phase transition
    Feng, Bohao
    Xu, Zhe
    Greiner, Carsten
    [J]. PHYSICAL REVIEW C, 2017, 95 (02)
  • [4] Critical dynamical properties of a first-order dissipative phase transition
    Casteels, W.
    Fazio, R.
    Ciuti, C.
    [J]. PHYSICAL REVIEW A, 2017, 95 (01)
  • [5] First-order phase transition of tethered membrane models
    Koibuchi, Hiroshi
    [J]. Flow Dynamics, 2006, 832 : 564 - 565
  • [6] First-Order Dynamical Phase Transitions
    Canovi, Elena
    Werner, Philipp
    Eckstein, Martin
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (26)
  • [7] Viable inflationary models ending with a first-order phase transition
    Cortes, Marina
    Liddle, Andrew R.
    [J]. PHYSICAL REVIEW D, 2009, 80 (08):
  • [8] Control and parameterization of dynamical nonlinear processes during first-order phase transition
    Bityutskaya, LA
    Mashkina, ES
    [J]. 2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 80 - 84
  • [9] First-order phase-transition on dynamical Lorentz symmetry breaking system
    Gomes, Y. M. P.
    Neves, M. J.
    [J]. NUCLEAR PHYSICS B, 2024, 1006
  • [10] Dynamical Phase Transition in Kinetically Constrained Models with Energy-Activity Double-Bias Trajectory Ensemble
    Lee, Jay-Hak
    Jung, YounJoon
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (06): : 1553 - 1563