Probabilistic Reasoning Across the Causal Hierarchy

被引:0
|
作者
Ibeling, Duligur [1 ]
Icard, Thomas [2 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Philosophy, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
LOGIC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a formalization of the three-tier causal hierarchy of association, intervention, and counterfactuals as a series of probabilistic logical languages. Our languages are of strictly increasing expressivity, the first capable of expressing quantitative probabilistic reasoning-including conditional independence and Bayesian inference-the second encoding do-calculus reasoning for causal effects, and the third capturing a fully expressive do-calculus for arbitrary counterfactual queries. We give a corresponding series of finitary axiomatizations complete over both structural causal models and probabilistic programs, and show that satisfiability and validity for each language are decidable in polynomial space.
引用
收藏
页码:10170 / 10177
页数:8
相关论文
共 50 条
  • [1] IS CAUSAL REASONING HARDER THAN PROBABILISTIC REASONING?
    Mosse, Milan
    Ibeling, Duligur
    Icard, Thomas
    [J]. REVIEW OF SYMBOLIC LOGIC, 2024, 17 (01): : 106 - 131
  • [2] PROBABILISTIC VARIATIONAL CAUSAL EFFECT AS A NEW THEORY FOR CAUSAL REASONING
    Department of Mathematics and Computer Science, The University of Quebec at Trois-Rivieres, 3351 Bd des Forges, Trois-Rivières
    QC
    G8Z 4M3, Canada
    [J]. arXiv, 1600,
  • [3] Causal versus probabilistic reasoning in clinical judgment
    Garb, Howard
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2008, 43 (3-4) : 174 - 174
  • [4] Probabilistic causal reasoning under time pressure
    Kolvoort, Ivar R.
    Fisher, Elizabeth L.
    van Rooij, Robert
    Schulz, Katrin
    van Maanen, Leendert
    [J]. PLOS ONE, 2024, 19 (04):
  • [5] Argumentation-Based Probabilistic Causal Reasoning
    Bengel, Lars
    Bluemel, Lydia
    Rienstra, Tjitze
    Thimm, Matthias
    [J]. ROBUST ARGUMENTATION MACHINES, RATIO 2024, 2024, 14638 : 221 - 236
  • [6] Changing times: a causal theory of probabilistic temporal reasoning
    Tawfik, AY
    Neufeld, E
    [J]. JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 1999, 11 (01) : 3 - 21
  • [7] Temporal reasoning for diagnosis in a causal probabilistic knowledge base
    Long, W
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 1996, 8 (03) : 193 - 215
  • [8] MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming
    Perov, Yura
    Graham, Logan
    Gourgoulias, Kostis
    Richens, Jonathan G.
    Lee, Ciaran M.
    Baker, Adam
    Johri, Saurabh
    [J]. SYMPOSIUM ON ADVANCES IN APPROXIMATE BAYESIAN INFERENCE, VOL 118, 2019, 118
  • [9] Enhancing probabilistic reasoning: The role of causal graphs, statistical format and numerical skills
    Tubau, Elisabet
    [J]. LEARNING AND INDIVIDUAL DIFFERENCES, 2008, 18 (02) : 187 - 196
  • [10] Causal reasoning
    Christoph Hoerl
    [J]. Philosophical Studies, 2011, 152 : 167 - 179