A new non-monotone SQP algorithm for the minimax problem

被引:8
|
作者
Xue, Wenjuan [1 ,3 ]
Shen, Chungen [2 ,3 ]
Pu, Dingguo [3 ]
机构
[1] Shanghai Univ Elect Power, Dept Math & Phys, Shanghai, Peoples R China
[2] Shanghai Finance Univ, Dept Appl Math, Shanghai, Peoples R China
[3] Tongji Univ, Dept Math, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
minimax problem; constrained optimization; nonmonotonicity; SQP; convergence; OPTIMIZATION;
D O I
10.1080/00207160701763057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new sequential quadratic programming (SQP) algorithm is proposed to solve the minimax problem which uses the idea of nonmonotonicity. The problem is transformed into an equivalent inequality constrained nonlinear optimization problem. In order to prevent the scaling problem, we do some modifications to the minimization problem. By the non-monotone SQP method, the new algorithm is globally convergent without using a penalty function. Furthermore, it is shown that the proposed method does not suffer from the Maratos effect, so the locally superlinear convergence is achieved. Numerical results suggest that our algorithm for solving the minmax problem is efficient and robust.
引用
收藏
页码:1149 / 1159
页数:11
相关论文
共 50 条
  • [1] A NEW NONMONOTONE LINESEARCH SQP ALGORITHM FOR UNCONSTRAINED MINIMAX PROBLEM
    Wang, Fu-Sheng
    Jian, Jin-Bao
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2014, 35 (04) : 487 - 508
  • [2] The non-monotone conic algorithm
    Manoussakis, G. E.
    Botsaris, C. A.
    Grapsa, T. N.
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2008, 29 (01): : 1 - 15
  • [3] A new non-monotone fitness scaling for genetic algorithm
    Li, Minqiang
    Kou, Jisong
    [J]. Progress in Natural Science, 2001, 11 (08) : 629 - 630
  • [4] A new non-monotone fitness scaling for genetic algorithm
    李敏强
    寇纪淞
    [J]. Progress in Natural Science:Materials International, 2001, (08) : 64 - 72
  • [5] A new non-monotone fitness scaling for genetic algorithm
    Li, MQ
    Kou, JS
    [J]. PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2001, 11 (08) : 622 - 630
  • [6] STEFAN PROBLEM WITH A NON-MONOTONE BOUNDARY
    CROWLEY, AB
    OCKENDON, JR
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1977, 20 (03): : 269 - 281
  • [7] Generalized monotone line search SQP algorithm for constrained minimax problems
    Jian, Jin-Bao
    Zhang, Xue-Lu
    Quan, Ran
    Ma, Qing
    [J]. OPTIMIZATION, 2009, 58 (01) : 101 - 131
  • [8] A New Non-monotone Line Search Algorithm for Nonlinear Programming
    Zhang, Jing
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (7B): : 265 - 268
  • [9] A Projection Algorithm for Non-Monotone Variational Inequalities
    Burachik, Regina S.
    Millan, R. Diaz
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2020, 28 (01) : 149 - 166
  • [10] PROBLEM IN HYDRAULICS WITH NON-MONOTONE FREE BOUNDARY
    FRIEDMAN, A
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (06) : 577 - 592