Altitude of atmospheric tracer transport towards Antarctica in present and glacial climate

被引:28
|
作者
Krinner, Gerhard [1 ,2 ]
Petit, J. -R. [1 ,2 ]
Delmonte, B. [1 ,2 ,3 ]
机构
[1] Ecole Natl Super Electrochim & Electrome Grenoble, Thermodynam & Physicochim Met Lab, CNRS, LGGE,INSU, F-38402 St Martin Dheres, France
[2] UJF Grenoble, Grenoble, France
[3] Univ Milano Bicocca, DISAT, Milan, Italy
关键词
EAST ANTARCTICA; ICE CORE; DOME-C; DUST TRANSPORT; SEA-ICE; PRECIPITATION; VARIABILITY; AEROSOL; MAXIMUM; VOSTOK;
D O I
10.1016/j.quascirev.2009.06.020
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The preferential altitude of transport of continental tracers towards Antarctica under present and Last Glacial Maximum (21 kyr BP) conditions is analysed using an atmospheric general circulation model with idealized tracers which are emitted at the surface of Australia and South America. It is shown that the difference between the preferential transport altitude of Australian and South American tracers is similar in glacial and interglacial climates. Australian tracers arriving in Antarctica are consistently transported at higher altitudes than tracers emitted in South America. The frequency of low-level transport is stronger at the LGM than at present, reflecting a more vigorous atmospheric circulation at the LGM as a consequence of increased baroclinicity. While the spatial patterns of the total tracer concentrations at the Antarctic surface differ for Australian and South American tracers, with the regions of maximum surface concentration being located to the south-east of the respective tracer sources, the spatial distribution of the part advected via upper atmospheric levels is very similar for the Australian and South American tracers, with a maximum over Queen Maud Land. The simulated changes in transport characteristics cannot explain observed glacial to interglacial variations of dust size spectra which have been interpreted as indicators of the relative intensity of upper and lower level atmospheric dust transport to Antarctica. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:274 / 284
页数:11
相关论文
共 50 条
  • [1] Dust transport to Dome C, Antarctica, at the Last Glacial Maximum and present day
    Lunt, DJ
    Valdes, PJ
    GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (02) : 295 - 298
  • [2] Modeling of chemical tracer transport in the atmospheric environment and its impact on the global climate
    Begum, ZN
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2005, 95 (03): : 423 - 427
  • [3] Sediment transport rates of major floods in glacial and non-glacial rivers in Norway in the present and future climate
    Bogen, Jim
    SEDIMENT DYNAMICS AND THE HYDROMORPHOLOGY OF FLUVIAL SYSTEMS, 2006, 306 : 148 - 158
  • [4] Atmospheric depletion of mercury over Antarctica during glacial periods
    Petru Jitaru
    Paolo Gabrielli
    Alexandrine Marteel
    John M. C. Plane
    Fréderic A. M. Planchon
    Pierre-Alexis Gauchard
    Christophe P. Ferrari
    Claude F. Boutron
    Freddy C. Adams
    Sungmin Hong
    Paolo Cescon
    Carlo Barbante
    Nature Geoscience, 2009, 2 : 505 - 508
  • [5] Atmospheric depletion of mercury over Antarctica during glacial periods
    Jitaru, Petru
    Gabrielli, Paolo
    Marteel, Alexandrine
    Plane, John M. C.
    Planchon, Frederic A. M.
    Gauchard, Pierre-Alexis
    Ferrari, Christophe P.
    Boutron, Claude F.
    Adams, Freddy C.
    Hong, Sungmin
    Cescon, Paolo
    Barbante, Carlo
    NATURE GEOSCIENCE, 2009, 2 (07) : 505 - 508
  • [6] ATTILA: atmospheric tracer transport in a Lagrangian model
    Reithmeier, C
    Sausen, R
    TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2002, 54 (03): : 278 - 299
  • [7] GCM simulations of the Last Glacial Maximum surface climate of Greenland and Antarctica
    Krinner, G
    Genthon, C
    CLIMATE DYNAMICS, 1998, 14 (10) : 741 - 758
  • [8] One-to-one coupling of glacial climate variability in Greenland and Antarctica
    Barbante, C.
    Barnola, J. -M.
    Becagli, S.
    Beer, J.
    Bigler, M.
    Boutron, C.
    Blunier, T.
    Castellano, E.
    Cattani, O.
    Chappellaz, J.
    Dahl-Jensen, D.
    Debret, M.
    Delmonte, B.
    Dick, D.
    Falourd, S.
    Faria, S.
    Federer, U.
    Fischer, H.
    Freitag, J.
    Frenzel, A.
    Fritzsche, D.
    Fundel, F.
    Gabrielli, P.
    Gaspari, V.
    Gersonde, R.
    Graf, W.
    Grigoriev, D.
    Hamann, I.
    Hansson, M.
    Hoffmann, G.
    Hutterli, M. A.
    Huybrechts, P.
    Isaksson, E.
    Johnsen, S.
    Jouzel, J.
    Kaczmarska, M.
    Karlin, T.
    Kaufmann, P.
    Kipfstuhl, S.
    Kohno, M.
    Lambert, F.
    Lambrecht, Anja
    Lambrecht, Astrid
    Landais, A.
    Lawer, G.
    Leuenberger, M.
    Littot, G.
    Loulergue, L.
    Luethi, D.
    Maggi, V.
    NATURE, 2006, 444 (7116) : 195 - 198
  • [9] Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica
    Sudarchikova, N.
    Mikolajewicz, U.
    Timmreck, C.
    O'Donnell, D.
    Schurgers, G.
    Sein, D.
    Zhang, K.
    CLIMATE OF THE PAST, 2015, 11 (05) : 765 - 779