Nonstationary covariance functions for Gaussian process regression

被引:0
|
作者
Paciorek, CJ [1 ]
Schervish, MJ [1 ]
机构
[1] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a class of nonstationary covariance functions for Gaussian process (GP) regression. Nonstationary covariance functions allow the model to adapt to functions whose smoothness varies with the inputs. The class includes a nonstationary version of the Matern stationary covariance, in which the differentiability of the regression function is controlled by a parameter, freeing one from fixing the differentiability in advance. In experiments, the nonstationary GP regression model performs well when the input space is two or three dimensions, outperforming a neural network model and Bayesian free-knot spline models, and competitive with a Bayesian neural network, but is outperformed in one dimension by a state-of-the-art Bayesian free-knot spline model. The model readily generalizes to non-Gaussian data. Use of computational methods for speeding GP fitting may allow for implementation of the method on larger datasets.
引用
收藏
页码:273 / 280
页数:8
相关论文
共 50 条
  • [1] An Observation Angle Dependent Nonstationary Covariance Function for Gaussian Process Regression
    Melkumyan, Arman
    Nettleton, Eric
    [J]. NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2009, 5863 : 331 - 339
  • [2] Evolution of Covariance Functions for Gaussian Process Regression Using Genetic Programming
    Kronberger, Gabriel
    Kommenda, Michael
    [J]. COMPUTER AIDED SYSTEMS THEORY, PT 1, 2013, 8111 : 308 - 315
  • [3] Regression-based covariance functions for nonstationary spatial modeling
    Risser, Mark D.
    Calder, Catherine A.
    [J]. ENVIRONMETRICS, 2015, 26 (04) : 284 - 297
  • [4] EXPECTATION PROPAGATION FOR NONSTATIONARY HETEROSCEDASTIC GAUSSIAN PROCESS REGRESSION
    Tolvanen, Ville
    Jylanki, Pasi
    Vehtari, Aki
    [J]. 2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2014,
  • [5] ASYMPTOTIC PROPERTIES OF DISTRIBUTION OF MAXIMUM OF GAUSSIAN NONSTATIONARY PROCESS OCCURRING IN COVARIANCE STATISTIC
    OSTROVSKII, EI
    TSYKUNOVA, SY
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1995, 39 (03) : 527 - 534
  • [6] Nonstationary Gaussian Process Regression Using Point Estimates of Local Smoothness
    Plagemann, Christian
    Kersting, Kristian
    Burgard, Wolfram
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PART II, PROCEEDINGS, 2008, 5212 : 204 - +
  • [7] Augmenting Stationary Covariance Functions with a Smoothness Hyperparameter and Improving Gaussian Process Regression Using a Structural Similarity Index
    Anna Chlingaryan
    Raymond Leung
    Arman Melkumyan
    [J]. Mathematical Geosciences, 2024, 56 : 605 - 637
  • [8] Augmenting Stationary Covariance Functions with a Smoothness Hyperparameter and Improving Gaussian Process Regression Using a Structural Similarity Index
    Chlingaryan, Anna
    Leung, Raymond
    Melkumyan, Arman
    [J]. MATHEMATICAL GEOSCIENCES, 2024, 56 (03) : 605 - 637
  • [9] Parametric nonstationary covariance functions on spheres
    Blake, Lewis R.
    Porcu, Emilio
    Hammerling, Dorit M.
    [J]. STAT, 2022, 11 (01):
  • [10] Divisive Gaussian Processes for Nonstationary Regression
    Munoz-Gonzalez, Luis
    Lazaro-Gredilla, Miguel
    Figueiras-Vidal, Anibal R.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (11) : 1991 - 2003