Spectral biclustering of microarray data: Coclustering genes and conditions

被引:420
|
作者
Kluger, Y [1 ]
Basri, R
Chang, JT
Gerstein, M
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Yale Univ, Dept Genet, New Haven, CT 06520 USA
[3] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
[4] Yale Univ, Dept Stat, New Haven, CT 06520 USA
[5] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
关键词
D O I
10.1101/gr.648603
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Global analyses of RNA expression levels are useful for classifying genes and overall phenotypes. Often these classification problems are linked, and one wants to find "marker genes" that are differentially expressed in particular sets of "conditions." We have developed a method that simultaneously clusters genes and conditions, finding distinctive "checkerboard" patterns in matrices of gene expression data, if they exist. In a cancer context, these checkerboards correspond to genes that are markedly up- or downregulated in patients with particular types of tumors. Our method, spectral biclustering, is based on the observation that checkerboard structures in matrices of expression data can be found in eigenvectors corresponding to characteristic expression patterns across genes or conditions. In addition, these eigenvectors can be readily identified by commonly used linear algebra approaches, in particular the singular value decomposition (SVD), coupled with closely integrated normalization steps. We present a number of variants of the approach, depending on whether the normalization over genes and conditions is done independently or in a coupled fashion. We then apply spectral biclustering to a selection of publicly available cancer expression data sets, and examine the degree to which the approach is able to identify checkerboard structures. Furthermore, we compare the performance of our biclustering methods against a number of reasonable benchmarks (e.g., direct application of SVD or normalized cuts to raw data).
引用
收藏
页码:703 / 716
页数:14
相关论文
共 50 条
  • [1] Functional grouping of yeast genes via biclustering microarray data
    Mao, DQ
    Luo, Y
    Cheng, MS
    Zhang, JH
    [J]. FRONTIERS IN BIOSCIENCE-LANDMARK, 2005, 10 : 2669 - 2675
  • [2] Global biclustering of microarray data
    Wolf, Thomas
    Brors, Benedikt
    Hofmann, Thomas
    Georgii, Elisabeth
    [J]. ICDM 2006: Sixth IEEE International Conference on Data Mining, Workshops, 2006, : 125 - 129
  • [3] Bagged Biclustering for Microarray Data
    Hanczar, Blaise
    Nadif, Mohamed
    [J]. ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 1131 - 1132
  • [4] Evolutionary biclustering of microarray data
    Aguilar-Ruiz, JS
    Divina, F
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2005, 3449 : 1 - 10
  • [5] Random walk biclustering for microarray data
    Angiulli, Fabrizio
    Cesario, Eugenio
    Pizzuti, Clara
    [J]. INFORMATION SCIENCES, 2008, 178 (06) : 1479 - 1497
  • [6] Combined Unsupervised Biclustering of Microarray Data
    Malutan, Raul
    Gomez Vilda, Pedro
    Borda, Monica
    [J]. 2012 35TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2012, : 525 - 528
  • [7] Possibilistic approach for biclustering microarray data
    Cano, C.
    Adarve, L.
    Lopez, J.
    Blanco, A.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (10) : 1426 - 1436
  • [8] Biclustering microarray data by Gibbs sampling
    Sheng, Qizheng
    Moreau, Yves
    De Moor, Bart
    [J]. BIOINFORMATICS, 2003, 19 : II196 - II205
  • [9] Biclustering models for structured microarray data
    Turner, HL
    Bailey, TC
    Krzanowski, WJ
    Hemingway, CA
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2005, 2 (04) : 316 - 329
  • [10] Bagging for Biclustering: Application to Microarray Data
    Hanczar, Blaise
    Nadif, Mohamed
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I: EUROPEAN CONFERENCE, ECML PKDD 2010, 2010, 6321 : 490 - 505