Real-time Local Feature with Global Visual Information Enhancement

被引:0
|
作者
Miao, Jinyu [1 ,2 ,3 ]
Yue, Haosong [2 ]
Liu, Zhong [2 ]
Wu, Xingming [1 ,2 ]
Fang, Zaojun [4 ]
Yang, Guilin [4 ]
机构
[1] Beihang Univ, Hangzhou Innovat Inst, Hangzhou, Peoples R China
[2] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China
[3] Tsinghua Univ, Sch Vehicle & Mobil, Beijing, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo, Peoples R China
基金
中国国家自然科学基金;
关键词
local feature; feature extraction; feature matching; deep learning;
D O I
10.1109/ICIEA54703.2022.10006314
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Local feature provides compact and invariant image representation for various visual tasks. Current deep learningbased local feature algorithms always utilize convolution neural network (CNN) architecture with limited receptive field. Besides, even with high-performance GPU devices, the computational efficiency of local features cannot be satisfactory. In this paper, we tackle such problems by proposing a CNN-based local feature algorithm. The proposed method introduces a global enhancement module to fuse global visual clues in a light-weight network, and then optimizes the network by novel deep reinforcement learning scheme from the perspective of local feature matching task. Experiments on the public benchmarks demonstrate that the proposal can achieve considerable robustness against visual interference and meanwhile run in real time.
引用
收藏
页码:189 / 194
页数:6
相关论文
共 50 条
  • [1] A real-time anchor-free defect detector with global and local feature enhancement for surface defect detection
    Liu, Qing
    Liu, Min
    Jonathan, Q. M.
    Shen, Weiming
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 246
  • [2] Improve Real-time Object Detection with Feature Enhancement
    Wei, Wendian
    Hu, Yu
    [J]. PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 235 - 238
  • [3] Feature extraction and enhancement for real-time semantic segmentation
    Tan, Sixiang
    Yang, Wenzhong
    Lin, JianZhuang
    Yu, Weijie
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (17):
  • [4] REAL-TIME PROCESSING OF LOCAL CONTRAST ENHANCEMENT ON FPGA
    Kokufuta, Kentaro
    Maruyama, Tsutomu
    [J]. FPL: 2009 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS, 2009, : 288 - 293
  • [5] DESCRIPTOR SCORING FOR FEATURE SELECTION IN REAL-TIME VISUAL SLAM
    Laddha, Prashant
    Omer, Om Ji
    Kalsi, Gurpreet Singh
    Mandal, Dipan Kumar
    Subramoney, Sreenivas
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2601 - 2605
  • [6] Real-Time Visual Tracking with Compact Shape and Color Feature
    Gao, Zhenguo
    Xia, Shixiong
    Zhang, Yikun
    Yao, Rui
    Zhao, Jiaqi
    Niu, Qiang
    Jiang, Haifeng
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2018, 55 (03): : 509 - 521
  • [7] Fast SIFT Design for Real-Time Visual Feature Extraction
    Chiu, Liang-Chi
    Chang, Tian-Sheuan
    Chen, Jiun-Yen
    Chang, Nelson Yen-Chung
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (08) : 3158 - 3167
  • [8] Learning Feature Channel Weighting for Real-Time Visual Tracking
    Li, Zhetao
    Zhang, Jie
    Li, Yanchun
    Zhu, Jiang
    Long, Saiqin
    Xue, Dengfeng
    Fan, Longfei
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2190 - 2200
  • [9] Local feature saliency classifier for real-time intrusion monitoring
    Buch, Norbert
    Velastin, Sergio A.
    [J]. OPTICAL ENGINEERING, 2014, 53 (07)
  • [10] Real-time vehicle recognition using local feature extraction
    Hwang, W
    Ko, H
    [J]. ELECTRONICS LETTERS, 2001, 37 (07) : 424 - 425